بسم الله الرحمان الرحيم (وَفَوْقَ كُلِّ ذِي عِلْمٍ عَلِيمٌ)

Metabolism | Lecture 14

Alcohol Metabolism

Written by: NST

Reviewed by: NST

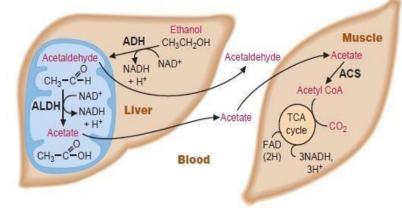
Ethanol

Alcohol Metabolism

Dr. Diala Abu-Hassan

Ethanol

Non-Polar side Polar side


Alcoholic compound composed of 2 carbons non-polar side and 1(OH) group polar side so it's kind of amphipathic, which facilitates its absorption through stomach cells. It's present in alcoholic beverages

So, in this lecture we're going to discuss how the body cells get rid of it and degrade it to finish its effects on CNS...

Metabolism of Alcohol

- ✓ When alcohol is ingested, a small amount is immediately metabolized in the stomach. (ethanol moves easily through cells until it reach stomach)
- ✓ Most of the remaining alcohol is subsequently absorbed from the gastrointestinal tract, primarily the stomach and upper small intestine

ADH: Alcohol Dehydrogenase

ALDH: Acetaldehyde Dehydrogenase

ACS: Acetyl CoA Synthetase

How do you prepare acetic acid from ethanol in organic chemistry?

Ethanol enters hepatocytes (liver cells):

1.In the cytosol of hepatocytes, ethanol (a primary alcohol) is oxidized to acetaldehyde by the enzyme alcohol dehydrogenase (ADH).

- 1. During this reaction, NAD⁺ is **reduced** to NADH.
- 2. Reaction: Ethanol + NAD $^+$ \rightarrow Acetaldehyde + NADH + H $^+$

2.In the mitochondria, the toxic acetaldehyde is further oxidized to acetic acid (acetate) by acetaldehyde dehydrogenase (ALDH).

- 1. Again, NAD⁺ is reduced to NADH.
- 2. Reaction: Acetaldehyde + $NAD^+ \rightarrow Acetate + NADH + H^+$

The resulting acetate can:

- Leave the hepatocyte and enter the bloodstream, where it is taken up by muscle cells.
- In muscles, acetate is converted to acetyl-CoA by acetyl-CoA synthetase, which then enters the Krebs cycle for energy production.

However, Acetaldehyde itself is highly toxic and carcinogenic.

- Acetaldehyde (can go to the bloodstream directly) If it accumulates, it can cause cellular damage and even promote cancer development.
- Acetaldehyde also has a strong odor, which is why you can often smell alcohol on someone who has been drinking.
- This pathway involving alcohol dehydrogenase and acetaldehyde dehydrogenase is the main route for ethanol metabolism in humans

Metabolism of Alcohol-Steps Acetaldehyde

Acetyl CoA

What happens when a high amount of Ethanol is metabolized?

- NADH/NAD+ High
- Inhibition of FA oxidation
- Inhibition of gluconeogenesis
- Lactic acidosis

Consequences of Ethanol Metabolism Ethanol is metabolized in two oxidation steps:

- 1.Ethanol → Acetaldehyde (by alcohol AMP + PP; dehydrogenase, ADH)
 - 1. Occurs in the cytosol
 - $2.NAD^+ \rightarrow NADH$
 - 2. Acetaldehyde → Acetate (by acetaldehyde dehydrogenase, ALDH)
 - 1. Occurs in the mitochondria
 - $2.NAD^+ \rightarrow NADH$

Both reactions consume NAD⁺ and produce NADH, which raises the NADH/NAD+ ratio inside hepatocytes.

Major Metabolic Consequences

- a. Inhibition of the Krebs (TCA) Cycle
- High NADH levels inhibit key dehydrogenase enzymes in the Krebs cycle.
- This reduces energy (ATP) production from normal oxidative metabolism.

- High NADH pushes the conversion of pyruvate \rightarrow lactate, increasing lactic acid levels.
- This leads to metabolic (lactic) acidosis.
 - Reaction shift:
 Pyruvate + NADH → Lactate + NAD⁺
- Occurs because there is not enough NAD⁺ to run aerobic respiration efficiently, so anaerobic glycolysis increases.

c. X Inhibition of Gluconeogenesis

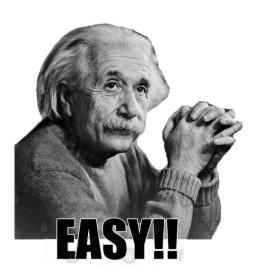
- •Gluconeogenesis requires pyruvate, oxaloacetate, and NAD⁺.
- •But high NADH:
 - Converts pyruvate → lactate instead of glucose precursors.
 - Converts oxaloacetate → malate, removing key substrates from the gluconeogenesis pathway.
- •Result \rightarrow **Hypoglycemia**, especially during fasting or heavy alcohol intake.

d. Inhibition of Fatty Acid Oxidation

- •Fatty acid oxidation also needs NAD⁺ as an electron acceptor.
- •When NAD⁺ is scarce (due to ethanol metabolism), **β-oxidation stops**.
- •Unused fatty acids are converted into triglycerides, causing fatty liver (hepatic steatosis).

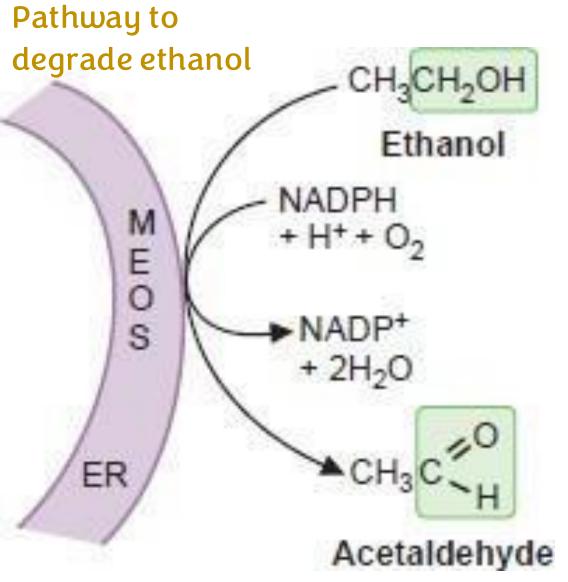
e. 🔁 Acetate Utilization

- •The acetate produced in the liver can enter the bloodstream.
- •Muscle cells convert acetate → acetyl-CoA via acetyl-CoA synthetase to use for energy.
- •However, this doesn't offset the metabolic imbalance caused by excess NADH in the liver.

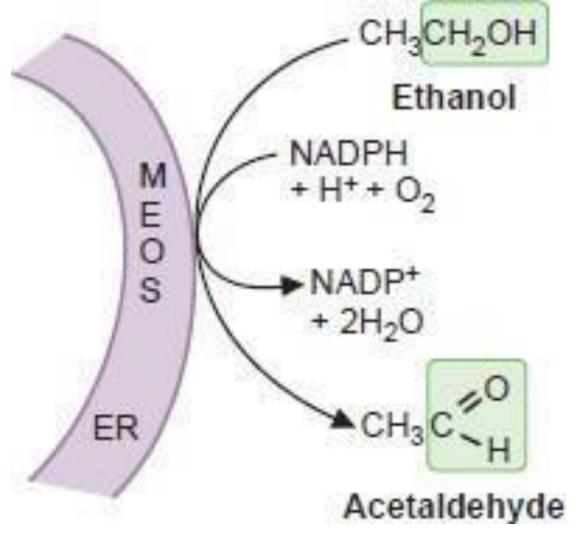

Summary: Chain of Effects

High Ethanol Intake $\rightarrow \uparrow$ NADH/NAD⁺ ratio $\rightarrow \downarrow$ Krebs cycle + \downarrow β -oxidation + \downarrow gluconeogenesis \rightarrow lactic acidosis + hypoglycemia + fatty liver

Easy Way to Remember:

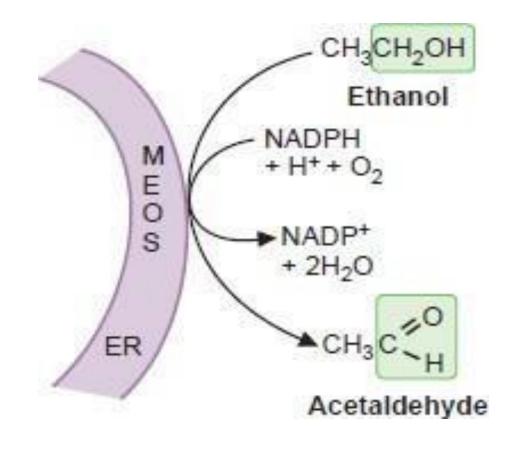

"Too much NADH shuts down the liver's power plants."

- ♦ Stops Krebs
- Stops Fat burning
- ♦ Stops Glucose making
- ♦ Starts Lactic acid build-up



Metabolism of Alcohol

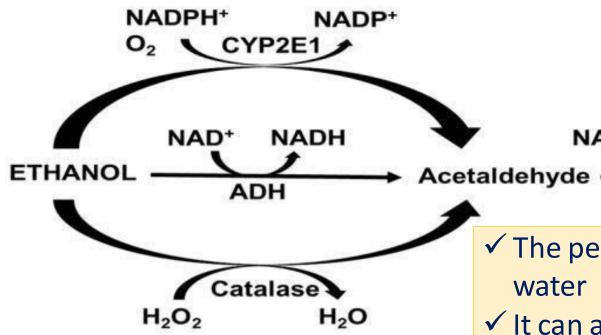
The most The second important MEOS: Microsomal Ethanol Oxidizing System Mechanism



- ✓ An alternative pathway for ethanol metabolism
- √ 10-20% of the ingested ethanol
- ✓ Involves primarily the cytochrome P450 2E1 (CYP2E1)
- ✓ CYP2E1 is associated with NADPH-cytochrome P450 reductase in the
- ✓ High K_m for ethanol
- ✓ Inducible by ethanol
- ✓ CYP2E1 is a major contributor of oxidative stress in the hepatocytes by generating several reactive oxygen species (ROS) such as hydrogen peroxide (H_2O_2), hydroxyethyl radical (HER·), hydroxyl radical (OH-) and superoxide (O_3^{-1})

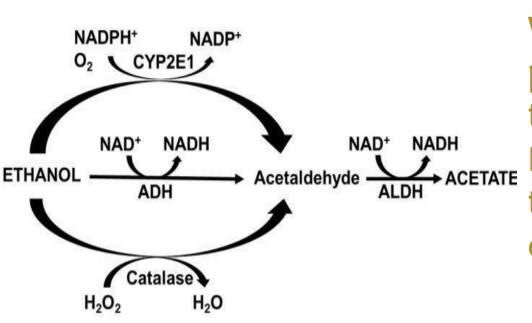
This one is going to depend mainly on the cytochrome P450 2E1 to do this oxidization

1)We're going to oxidise ethanol to acetaldehyde (but the enzyme used and the system used is different) in this case we will use MEOS (Microsomal Ethanol Oxidizing) system that has a high km for ethanol (which means low affinity) it has to be induced by high concentration of ethanol (that's why it's just responsible for metabolism of a small amount of ethanol)



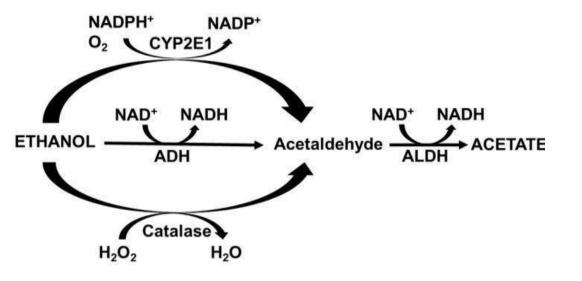
This oxidation is associated with another oxidation of NADPH to NADP+ So oxygen will be reduced taking electrons from both ethanol and NADPH to reduce the oxygen molecule into two H2O molecules. This process is associated with the production of reactive oxygen ROS such as :H2O2, hydroxyl radical, superoxide ions These are toxic to the hepatocytes in which this process is going to happen.

Metabolism of Alcohol-Catalase


NAD+

سُبْحَانَ اللَّهِ وَبِحَمْدِهِ عَدَدَ خَلْفِهِ ، وَرِضَا نَفْسِهِ ، وَرِنَهُ عَرْشِهِ ، وَهِدَادَ كَلِمَائِهِ ..

The third mechanism to get rid of alcohol again
The Ethanol will be oxidised to acetaldehyde
Same idea but using different enzyme system


- ✓ The peroxisomal catalase converts H₂O₂ to oxygen and water
- ✓ It can also oxidize ethanol to acetaldehyde
- ✓ Is not a key pathway for ethanol elimination.
- ✓ Catalase is ubiquitously expressed in almost all tissues
- ✓ Catalase is also expressed by colonic floras which may lead to acetaldehyde production in the lower gastrointestinal tract
- ✓ Catalase activity relies on the cellular level of H₂O₂

We use catalase that's present in the peroxisome so the peroxisomal catalase that normally gets rid of H2O2 and makes it H2O and oxidise ethanol to Acetaldehyde this is a very minor pathway to get rid of ethanol and eliminate it

It's responsible for a very small percentage of ethanol metabolism

This enzyme is also expressed by the microflora in the colon so there might be some production of acetaldehyde in the GI tract this system is connected/restricted to H2O2 availability so there has to be H2O2 to be able to oxidise ethanol That's why it's a minor system for metabolism alcohol

Then after acetaldehyde is formed whether it's going to form by alcohol dehydrogenase P452E1 or catalase it's going to be further oxidised into acetate

الحُندُ بِلَهِ عَدَدَ مَا خَلَقَ،

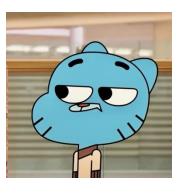
وَالْحُندُ بِلَهِ عِلْهَ مَا خَلَقَ،

وَالْحُندُ بِلَهِ عَدَدَ مَا فِي السَّمَاوَاتِ وَمَا فِي الأَرْضِ،

وَالْحُندُ بِلَهِ عَدَدَ مَا أَحْصَى كِتَابُهُ،

وَالْحُندُ بِلَهِ عَدَدَ مَا أَحْصَى كِتَابُهُ،

وَالْحُندُ بِلَهِ عِندَ مُلَ شَيْء،


وَالْحُندُ بِلَهِ عَدَدَ كُلِ شَيْء،

وَالْحُندُ بِلَهِ عِندَ كُلِ شَيْء،

وَالْحُندُ بِلَهِ مِنْء كُلِ شَيْء،

وَسُمَةٍ مُ اللّه مِنْلَهُنَ

- ✓ ADH has 5 classes or isoenzymes
- ✓ Different isoforms are expressed in different tissues such as liver, lung, stomach and esophagus.
- ✓ People with different races inherit different sets of ADH isoenzymes, for example African Americans have an isoform with a high maximal velocity resulting in fast ethanol metabolism

Different kinetics: some of them are faster in metabolism of ethanol than the others

The isoforms that are faster are going to remove the effect of ethanol on the CNS faster so the people will be more efficient in degradation of ethanol, and they won't get drunk easily, whereas the Southeast Asians have problems and mutations or the so-called polymorphisms in alcohol dehydrogenase resulting in less efficient and slower degradation of ethanol that's why they can get drug easily in compared to other races

Additional Resources:

رسالة من الفريق العلمي:

For any feedback, scan the code or click on

• Corrections from previous versions:

Versions	Slide # and Place of Error	Before Correction	After Correction
V0 → V1			
V1 → V2			