بسم الله الرحمان الرحيم (وَفَوْقَ كُلِّ ذِي عِلْمٍ عَلِيمٌ)

Metabolism | Lecture 4

Bioenergetics Pt.4

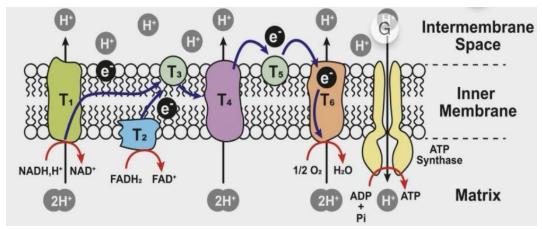
Written by: Mousa Al-Neimat

Reviewed by : Mohammad Al-Amawi

PRINCIPLES OF BIOENERGETICS

3- Biological Oxidation-Reduction Reactions (Redox)

- Enzymes are divided into 7 classes, the first class is Oxidoreductases, we are going to study this class and the oxidation-reduction reaction rather than others, why?
- ✓ Because it is highly associated and relevant to the topic of **Bioenergetics**.
- ✓ Energy production is all about the transfer of electrons from one molecule to another (for example, Krebs cycles main goal is to produce an electron carrier molecules (NADH & FADH2) which is an oxidation-Reduction reaction. Also, these electrons carrier molecules goes to the electron transport chain and give their electrons to complex I and complex III (this is also an oxidation reduction reaction). Also, these electrons will be transferred from one complex to another (which is also oxidation-reduction reaction).
- □ The Energy production is about the transmission of electrons from one molecule to another.



Let's talk about electricity:

- > When you are charging your phone, what is happening? The electricity (electron current) is moving from the energy source to your phone, why is this happening? This because there is a difference in potential energy between your phone battery and the energy source, and depending on that, the potential difference between the source and your phone battery is what drives the movement of electrons from the higher potential (source) to the lower potential (battery).
- > Can we reverse the direction of electrons?
- ☐ Yes, if we reverse the potential, the direction of electron movement will be reversed since electrons are always moving from higher potential to lower potential.
- But, does this concept that apply to electricity apply to our body?
- ☐ Yes, the physical concepts that applies to electrons in the electricity applies to the electrons in our body molecules. The InBody test works by measuring the speed at which electrical signals travel through different components of your body, such as fat, protein, and water.

- > If there is a potential difference between 2 molecules there will be a transfer of electrons from the higher potential to the lower one.
- What is potential energy?
- Dotential energy (الطاقة الكامنة) is the energy stored in the electron and it depends on the environment around the electron (the same electron in different molecules stores different energy). The energy content of an electron in orbit around the nucleus varies depending on its distance from the nucleus.

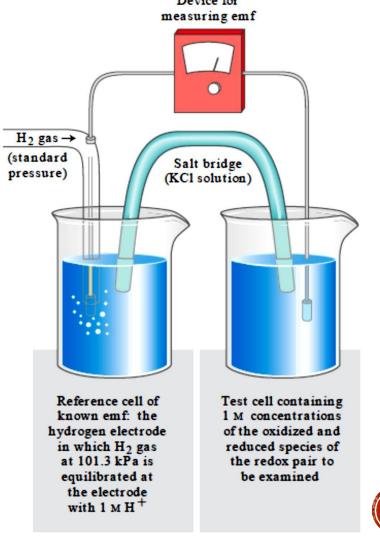
In Electron transport chain, the electrons are moving from one Heme group to another, but the presence of this heme group in different enzymes gives them and their electrons different potentials and this makes a **potential differences** between these enzymes and drives the transfer of electrons.

➤ Any material that can switch between two states (Oxidized & Reduced) we call these two states → (A Redox Couple), For Example:

$$\square$$
 NAD+ + H+ + 2e- \longrightarrow NADH (NAD+ / NADH)

$$\Box FAD + 2H + 2e - \longrightarrow FADH2 \qquad (FAD / FADH2)$$

- ☐ Cytochrome C + e- Cytochrome C (oxidized)
- > Reduction Potential: The ability of the molecule to be reduced.
- > Oxidation Potential: The ability of the molecule to be oxidized.
- > By knowing the reduction or oxidation potential of two molecules, we can know the potential difference and predict the direction of electrons transfer and the direction of the reaction.


> How we can know the oxidation and reduction potential for all the molecules in the universe?

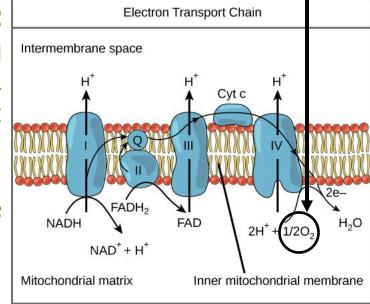
1) We standardise a molecule (or an element) as a standard electrode.

 $E = 0.00 V_{zero point}$

- 2) We put the molecule (or element) that we want to know its reduction (or oxidation) potential as the other electrode.
- 3) We write down the voltmeter readings and know the direction in which the electrons move, and we repeat that with every molecule (or element) in the universe.

By doing this over and over we have the table shown in the next slide.

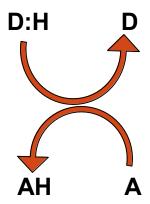
> Why we Breath?


We breath to pick up oxygen, why we need oxygen? To supply our tissue and cells, why we need to supply our cells with oxygen?

Because the **oxygen** plays a vital role in the production of energy since it is the **final electrons acceptor** at the **electron transport chain** in the mitochondrion.

And as you can see, the oxygen get reduced into O-2 and accompanies with protons (H+) which are highly abundant in the mitochondria resulting in the formation of Water (H2O). That's why the oxygen has the highest reduction potential (highest ability to accept electrons).

> This explains how we keep homeostasis of water inside


our body.

- Oxidation: Can happen through:
 - Gain of Oxygen
 - Loss of Hydrogen
 - Loss of electrons
- Reduction: Can happen through:
 - Gain of Hydrogen
 - Gain of electron
 - Loss of Oxygen

- E (redox Potential): it is a POTENTIAL ENERGY that measures the tendency of oxidant/reductant to gain/lose electrons, to become reduced/oxidized
- Electrons move from compounds with lower reduction potential (more negative) to compounds with higher reduction potential (more positive)
- Oxidation and reduction must occur simultaneously

REDUCTION POTENTIAL

Type of reaction? Group transfer reaction (if you calculate the oxidation number, you will find that it is an oxidation reduction reaction.

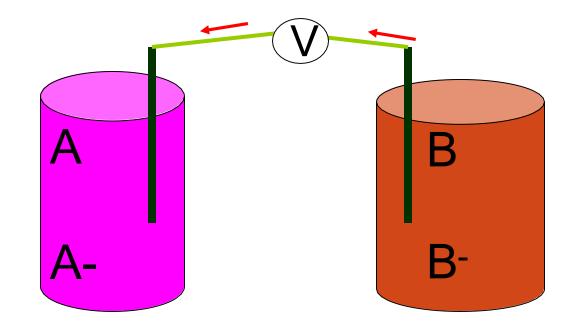
What determine the direction of the reaction?

 ΔG° and ΔE° ; and we are going to learn what is ΔE° as we are moving through the slides.

$$A^{++} + B^{++} \longrightarrow A^{+} + B^{+++}$$

Type of reaction Oxidation & Reduction Reaction

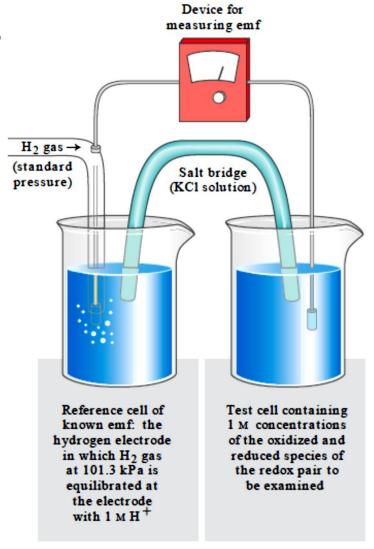
What determine the direction of the reaction?



REDUCTION POTENTIAL AND DIRECTION OF THE REACTION

A + B-
$$\longrightarrow$$
 A- + B $\triangle G^{\circ}$ = -ve

B oxidized form Redox couple


Redox couple

WHAT IS THE STANDARD?

- Hydrogen electrode
- H₂ Gas sensor

$$\mathrm{H}^+ + e^- \longrightarrow \frac{1}{2} \mathrm{H}_2$$

REDUCTION POTENTIAL AND DIRECTION OF THE REACTION

X- has higher tendency to lose electrons than H2 does

Negative reduction potential

STANDARD REDUCTION POTENTIAL (E⁰)

$$E = E^{\circ} + \frac{RT}{n\Im} \ln \frac{\text{[electron acceptor]}}{\text{[electron donor]}}$$

E: Reduction Potential

Eo: Reduction Potential at standard condition

R: Gaz constant, equals 8.314 J/(K.mol)

n: Number of transferred electrons

T: Temperature in calvin

$$E = E^{\circ} + \frac{0.026 \text{ V}}{n} \ln \frac{\text{[electron acceptor]}}{\text{[electron donor]}}$$

Farady constant, equals

23.06 Kcal/mol

REDUCTION POTENTIAL

Oxidized + e-	→ Reduced	ΔΕ^ο (V)
Succinate	α-ketoglutarate	-0.67
Acetate	Acetaldehyde	-0.60
NAD+	NADH	-0.32
Acetaldehyde	Ethanol	-0.20
Pyruvate	Lactate	-0.19
Fumarate	Succinate	+0.03
Cytochrome+3	Cytochrome+2	+0.22
oxygen	water	+0.82

TABLE 13-7 Standard Reduction Potentials of Some Biologically Important Half-Reactions, at pH 7.0 and 25 °C (298 K)

Hilf-reaction	E° (V)
$\frac{1}{2}O_2 + 2H^+ + 2e^- \longrightarrow H_2O$	0.816
$\mathbb{R}^{3+} + e^- \longrightarrow \mathbb{R}^{2+}$	0.771
$NO_3^- + 2H^+ + 2e^- \longrightarrow NO_2^- + H_2O$	0.421
Cytochrome $f(\mathbb{R}^{3+}) + e^{-} \longrightarrow \text{cytochrome } f(\mathbb{R}^{2+})$	0.365
$\text{Re}(\text{CN}_6^{3-} \text{ (ferricyanide)} + e^- \longrightarrow \text{Re}(\text{CN}_6^{4-}$	0.36
Cytochrome a_3 (Re^{3+}) + $e^- \longrightarrow$ cytochrome a_3 (Re^{2+})	0.35
$O_2 + 2H^+ + 2e^- \longrightarrow H_2O_2$	0.295
Cytochrome $a(\text{Re}^{3+}) + e^{-} \longrightarrow \text{cytochrome } a(\text{Re}^{2+})$	0.29
Cytochrome c (Fe^{3+}) + $e^- \longrightarrow \text{cytochrome } c$ (Fe^{2+})	0.254
Cytochrome c_1 (\mathbb{R}^{3+}) + $e^- \longrightarrow$ cytochrome c_1 (\mathbb{R}^{2+})	0.22
Cytochrome b (Re^{3+}) + $e^- \longrightarrow$ cytochrome b (Re^{2+})	0.077
Ubiquinone + $2H^+ + 2e^- \longrightarrow ubiquinol + H_2$	0.045
Furnarate ²⁻ + $2H^+ + 2e^- \longrightarrow succinate^{2-}$	0.031
$2H^+ + 2e^- \longrightarrow H_2$ (at standard conditions, pH0)	0.000
Grotonyl-CoA + $2H^+ + 2e^- \longrightarrow butyryl-CoA$	-0.015
Oxaloacetate ²⁻ + $2H^+$ + $2e^- \longrightarrow malate^{2-}$	-0.166
Pyruvate $^- + 2H^+ + 2e^- \longrightarrow lactate^-$	-0.185
Acetaldehyde + $2H^+ + 2e^- \longrightarrow \text{ethanol}$	-0.197
$\text{FAD} + 2\text{H}^+ + 2e^- \longrightarrow \text{FADH}_2$	-0.219*
Glutathione + $2H^+ + 2e^- \longrightarrow 2$ reduced glutathione	-0.23
$S + 2H^+ + 2e^- \longrightarrow H_2S$	-0.243
Lipoic acid $+ 2H^+ + 2e^- \longrightarrow dihydrolipoic acid$	-0.29
$NAD^+ + H^+ + 2e^- \longrightarrow NADH$	-0.320
$NADP^+ + H^+ + 2e^- \longrightarrow NADPH$	-0.324
Acetoacetate + $2H^+ + 2e^- \longrightarrow \beta$ -hydroxybutyrate	-0.346
α -Ketoglutarate + CO_2 + $2H^+$ + $2e^ \longrightarrow$ isocitrate	-0.38
$2H^+ + 2e^- \longrightarrow H_2 \text{ (at pH7)}$	-0.414
$\operatorname{Fenedoxin}(\operatorname{Fe}^{3+}) + e^{-} \longrightarrow \operatorname{fenredoxin}(\operatorname{Fe}^{2+})$	-0.432

NAD+ reduction potential and all molecules (or elements) reduction potential is constant in all reactions.

FAD differ from NAD+, since it produces a free radical, so it is always accompanied with an enzyme, so its reduction potential differs depending on that enzyme, (reduction potential of FAD at Succinate dehydrogenase differ from reduction potential of FAD at other enzymes).

That's why FAD has a star.

CALCULATION OF ΔG^o FROM ΔE^o

- There is a direct relationship between the standard Gibbs free energy change (ΔG°) and the standard difference in the reduction potential (ΔE°) because both describe the thermodynamic favorability of a reaction, just in different units.
- > The equation that connects them is:

$$\Delta G^{\circ} = -nF\Delta E^{\circ}$$

Where:

 ΔG° = standard **Gibbs free energy change** (in joules). **n** = number of **electrons transferred** in the redox reaction. **F** = **Faraday's constant** (23.06 Kcal/mol). ΔE° = standard difference in **reduction potential** (in volts) ΔE° = (E° of the electron acceptor – E° of the electron donor).

> ΔG° represent the amount of energy difference that is stored in the same electron but in different molecules (the electron donor and acceptor).

CALCULATION OF ΔG^o FROM ΔE^o

$$\Delta G^{\circ} = - \text{ nf} \Delta E^{\circ}$$
 $\Delta G = - n\mathcal{F} \Delta E$ or $\Delta G'^{\circ} = - n\mathcal{F} \Delta E'^{\circ}$
F=Farady constant =23.06 kcal/Volt

Calculate ΔG° of the following reaction

NADH +
$$1/2O_2$$
 \longrightarrow NAD+ + H_2O
NADH \longrightarrow NAD+ + $2e^2$ $\Delta E^2 = +0.32$
 $O + 2e$ \longrightarrow O^2 $\Delta E^{3/2} = +0.82$ V
 $\Delta G^2 = -52.6$ kcal/mol

- $\Delta E = E_A E_D$
- ΔE^0 = at standard condition
- Does ΔE determine the feasibility of a reaction? Yes, Already explained
 - $\Delta G^{o} = -nf\Delta E^{o}$
- In other words; energy (work) can be derived from the transfer of electrons.
- Or Oxidation of food can be used to synthesize ATP

FAD

NAD+

OXIDATION-REDUCTION REACTIONS (REDOX)

- Always involve a pair of chemicals: an electron donor and an electron acceptor (Food vs. NAD+)
- NAD+ vs. FAD
- NAD+ vs. NADP+ (fatty acid synthesis and detoxification reactions)

FAD

Accept 2 electrons at 2 different places.

$$FAD + 2H^{+} + 2e^{-} \rightleftharpoons FADH_{2}$$

- > You can't find it alone, it produce a free radical which is harmful for the cell after binding to the first H and then forms FADH2 by binding to the other H subsequently.
- There is another molecule called FMN (reduced to FMNH2), these 2 molecules with the same function, are present for **organisational purposes**.

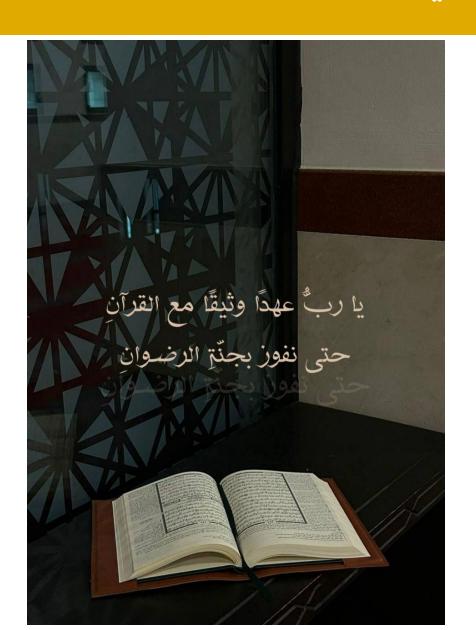
NAD+

> Reduced by getting two electrons as a hydride ion.

$$NAD^{+} + H^{+} + 2e^{-}$$
 NADH

- You can find it alone, it doesn't produce a free radical.
- There is other form of it that is phosphorylated called NADP+ and the phosphate is away from the site of action, they perform the same function, the benefit of having two molecules (NAD+/NADP+) performing the same function is **for organisations purposes**.

Site of Action


Nicotinamide

Nicotinamide

Nicotinamide

of phosphate group.

رسالة من الفريق العلمي:

For any feedback, scan the code or click on it.

Corrections from previous versions:

Versions	Slide # and Place of Error	Before Correction	After Correction
V0 → V1			
V1 → V2			