Adrenomimetic Drugs

Alia Shatanawi

α- Adrenergic Receptors

They are sub divided into

1. α-1 Adrenergic receptors:

present on smooth muscle, all blood vessels (causing constriction) and the muscles that cause dilation of pupil of eye.

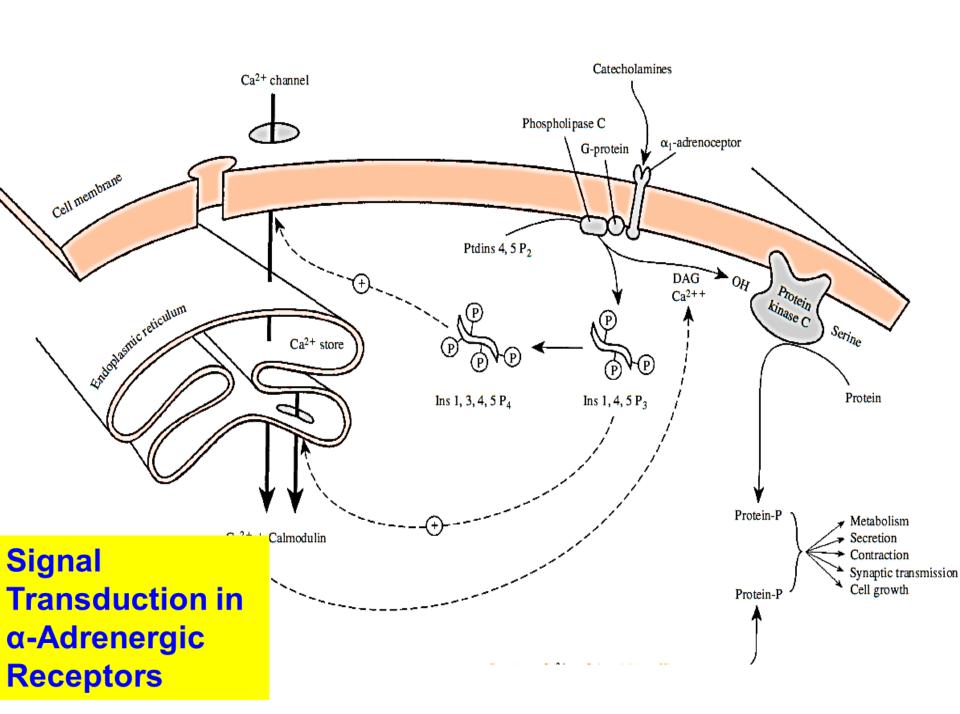
2. α-2 Adrenergic receptors:

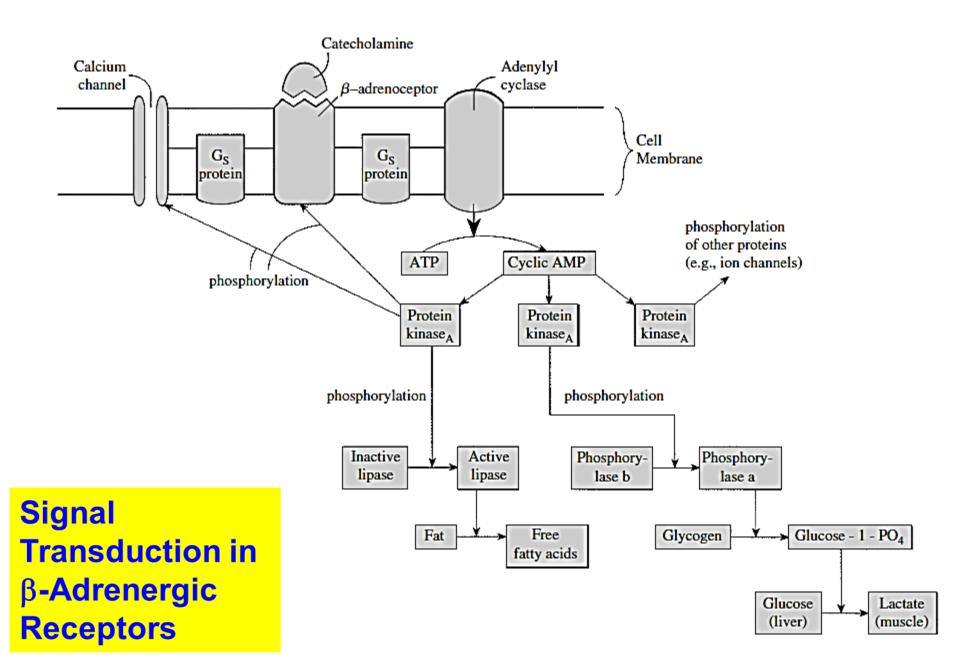
They are mainly presynaptic are found at adrenergic and cholinergic nerve terminals.

Also, postsynaptic are found in the blood vessels and in the CNS.

β-Adrenergic Receptors

Divided into:


1. β 1 adrenergic receptors: on heart (some β 2 also) increases rate and force of contraction.


2.β2 adrenergic receptors: present on smooth muscle, some blood vessels (in skeletal muscles), bronchial smooth muscles, skeletal muscles and liver

3.\(\beta\)3 adrenergic receptors: present in adipose tissue

What adrenoceptors "generally" do

Effector organ	Receptor	Response
Heart Sinoatrial node Atrioventricular node Atria and ventricles	β β β	Tachycardia Increase in conduction rate and shortening of functional refractory period Increased contractility
Blood vessels	B	r rereased contractinty
To skeletal muscle To skin	α and β	Contraction or relaxation Contraction
Bronchial muscle	β	Relaxation
Gastrointestinal smooth muscle To stomach To intestine	β α and β	Decreased motility Decreased motility
Gastrointestinal sphincters To stomach To intestine	α α	Contraction Contraction
Urinary bladder Detrusor Trigone and sphincter	β α	Relaxation Contraction
Eye Radial muscle, iris Ciliary muscle	α β	Contraction (mydriasis) Relaxation

Adrenergic Signal Transduction

Alpha-1 (similar to M1,M3,M5): $Gq \rightarrow PLC \rightarrow IP_3 \rightarrow PKC \rightarrow Ca$

Alpha-2 (similar to M2,M4): Gi \rightarrow inhibit adenylyl cyclase

Beta-1 and -2: Gs \rightarrow stimulate adenylyl cyclase

Sympathomimetics

Туре	Tissue	Actions
α1	Most vascular smooth muscle (innervated)	Contraction
	Pupillary dilator muscle	Contraction (dilates pupil)
	Pilomotor smooth muscle	Erects hair
	Prostate	Contraction
	Heart	Increases force of contraction
α_2	Postsynaptic CNS neurons	Probably multiple
	Platelets	Aggregation
	Adrenergic and cholinergic nerve terminals	Inhibits transmitter release
	Some vascular smooth muscle	Contraction

β1	Heart, juxtaglomerular cells	Increases force and rate of contraction; increases renin release
β_2	Respiratory, uterine, and vascular smooth muscle	Promotes smooth muscle relaxation
	Skeletal muscle	Promotes potassium uptake
	Human liver	Activates glycogenolysis
β_3	Bladder	Relaxes detrusor muscle
	Fat cells	Activates lipolysis
D ₁	Smooth muscle	Dilates renal blood vessels
D ₂	Nerve endings	Modulates transmitter release

Alpha agonists	
Phenylephrine, methoxamine	$\alpha_1 > \alpha_2 >>>> \beta$
Clonidine, methylnorepinephrine	$\alpha_2 > \alpha_1 >>>> \beta$
Mixed alpha and beta agonists	
Norepinephrine	$\alpha_1 = \alpha_2$; $\beta_1 >> \beta_2$
Epinephrine	$\alpha_1 = \alpha_2$; $\beta_1 = \beta_2$
Beta agonists	
Dobutamine ¹	$\beta_1 > \beta_2 >>>> \alpha$
Isoproterenol	$\beta_1 = \beta_2 >>>> \alpha$
Albuterol, terbutaline, metaproterenol, ritodrine	$\beta_2 >> \beta_1 >>>> \alpha$
Dopamine agonists	
Dopamine	$D_1 = D_2 >> \beta >> \alpha$
Fenoldopam	$D_1 >> D_2$

Cardiovascular system:

Blood vessels:

- > Catecholamines are important in the regulation of peripheral vascular resistance and venous capacitance.
- > Skin and splanchnic vessels have predominantly α -receptors \rightarrow constriction.
- > Skeletal muscle blood vessels have predominantly β -receptors \rightarrow dilation.
- > Dopamine D1 receptors promote vasodilation of renal resistance vessels (arterioles).
- ➤ Vasoconstriction reduces blood flow, while vasodilation increases blood flow.

Cardiovascular system:

Heart:

- > Effects on the heart are predominantly mediated through β1 receptors.
- ➤ Increase pacemaker activity → increase heart rate
 = "positive chronotropic effect".
- > Conduction velocity in the atrioventricular (AV) node is increased "positive dromotropic effect".
- > AV node refractory period is decreased.

Cardiovascular system:

B. Heart:

Myocardial contractility is increased = "positive inotropic effect".

Sympathomimetic that stimulate $\beta 1$ -receptors in the heart, increase cardiac output and thus, systolic blood pressure.

Cardiac output is also increased by an increase in venous return to the heart.

Cardiovascular system:

Blood Pressure:

- Diastolic blood pressure is related to systemic vascular resistance and is increased by vasoconstrictors and reduced by vasodilators.
- α-agonists increase peripheral arterial resistance
 → rise in diastolic blood pressure.

 \triangleright β 2-agonists decrease peripheral vascular resistance and thus diastolic blood pressure.

Autonomic Control of Smooth Muscle

Bronchial smooth muscle has beta-2 adrenoceptors

Be careful with nonselective beta agonists!

"Because the excessive cardiac stimulation produces cardiac arrhythmias and enhanced myocardial oxygen consumption, there is no rationale for using non-beta-2 selective agonists in the treatment of asthma."

Relax G.I. smooth muscle alpha and beta effects reduce motility may contract sphincters

Relax uterine smooth muscle beta-2 agonists delay premature labor

Relax detrusor muscle (β); contracts sphincter (α) urinary retention

Contract radial muscle (α)-- mydriasis

Effects on endocrine function

Metabolic effects: stress / "fight or flight"

- Lipolysis (β3)
- > Glycogenolysis (β2)
- Increased metabolic rate (β)
- \triangleright Decreased insulin secretion (α 2)
- > Renin release (β1)

Epinephrine

- > Stimulates all adrenoceptors ($\alpha 1$, $\alpha 2$, $\beta 1$, $\beta 2$).
- Very potent vasoconstrictor and cardiac stimulant.
- > Positive inotropic and chronotropic actions on the heart (β1).

Vasoconstrictor in many vascular beds ($\alpha 1$), and vasodilator in skeletal muscle blood vessels ($\beta 2$) \rightarrow increase blood flow during exercise.

Norepinephrine

Similar to epinephrine except it has no significant effect on $\beta2$ receptors.

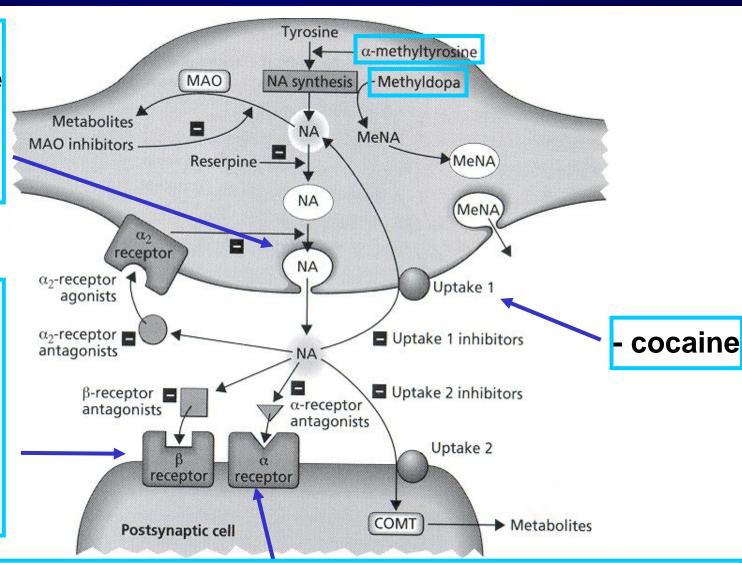
D1 Agonists

Dopamine

- ➤ Activates D1 receptors and produce vasodilation, which is specially clinically important in renal vascular bed → increase renal blood flow.
- \triangleright Activates β 1 receptors in the heart.
- At high concentration, it activates vascular α receptors leading to vasoconstriction including the renal vascular bed.

Fenoldopam

- ➤ Is a selective D1 receptor agonist causing peripheral vasodilation.
- Very useful intravenously in treating severe hypertension


Adrenergic Pharmacology

NE release

- + amphetamine
- + ephedrine
- guanethidine
- reserpine

β-AR

- + isoproterenol
- + dobutamine
- + terbutaline
- + albuterol
- propranolol
- metoprolol

α-AR: +phenylephrine, +methoxamine, +clonidine


- phenoxybenzamine, - phentolamine, - prazosin

Adrenergic Agents: a dual strategy

2) Indirect Effect:
nerve terminal
enhance / inhibit
NE release

1) <u>Direct Effect</u>: adrenoceptors

mimic / antagonize effect of NE (Adrenomimetics / blockers)

Adrenomimetic Amines

"mimic" the effect of NE

Direct selective adrenergic agonists:

stimulate alpha or beta adrenoceptors

alpha-1: phenylephrine

methoxamine

alpha-2: clonidine

beta-1: dobutamine

beta-2: terbutaline

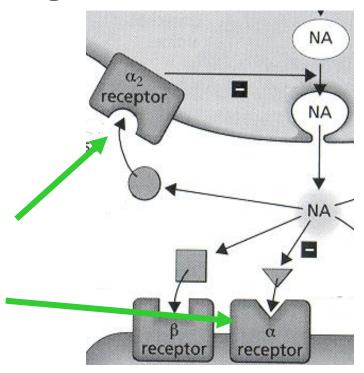
albuterol

Alpha-1 Adrenergic Agonists

PHENYLEPHRINE

- Alpha-1 adrenergic agonist
- **Weak beta effects**
- Not a substrate for COMT
- Primary use: vasoconstrictor
- >Treat hypotensive states
 - ·shock, spinal anesthesia
- Masal decongestant (Neosynephrine)
 - rhinitis medicamentosa or rebound
- **Mydriasis**

Alpha-1 Adrenergic Agonists


METHOXAMINE

- >Alpha-1 adrenergic agonist
- Does not stimulate beta adrenoceptors
- Primary use: vasoconstrictor
- >Treat hypotensive states
 - ·shock, spinal anesthesia
- Not metabolized by COMT or MAO

Alpha-2 Adrenergic Agonists

CLONIDINE

- Alpha-2 adrenergic agonist
- Direct vasoconstrictor
- Indirect antihypertensive agent
 - ·central suppression
- Rebound hypertension

Beta-1 Adrenergic Agonist

DOBUTAMINE

- > Beta-1" adrenergic agonist
- Stimulates beta-2 and alpha adrenoceptors
- **Inotropic agent**
- >Vasodilation predominates
 - preserves renal and G.I. blood flow
 - · heart failure
- >Tolerance may develop

Beta-2 Adrenergic Agonists

TERBUTALINE and ALBUTEROL

- Selective beta-2 agonists (normal doses)
- Primary use: broncodilator
- Reduced risk of cardiac stimulation
- May inhibit mast cell secretion
- Not metabolized by COMT or MAO
 - long duration of action than ISO
- Inhalation helps limit side effects

Indirect Adrenergic Agonists

AMPHETAMINE

- Enhances NE release (exact mechanism)
- Action similar to NE
- Powerful CNS stimulant
 - · Less fatigue, increased alertness
 - Better physical performance
- Appetite suppression
- Dependency and tolerance

Mixed-Acting Adrenergic Agonist

EPHEDRINE

- **Indirect: induces NE release**
- Direct: stimulates α and β adrenoceptors
- Bronchodilation due to beta effects
 - replaced by beta-2 agonists
- >Urinary incontinence
- CNS stimulation
- Appetite suppression
 - more effective combined with caffeine
 - · herbal preparation: Ma huang

Beta-3 Adrenergic Agonist

Vibegron: a selective beta-3 adrenergic receptor agonist in the detrusor muscle.

- Used for the treatment of overactive bladder.
- Side effects:
- Headache
- Urinary tract infection
- Common cold
- Diarrhea, nausea
- Upper respiratory tract infection.

Mirabegron: Similar uses and side effects