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Probability

Probability theory
developed from the study
of games of chance like dice
and cards. A process like
flipping a coin, rolling a die
or drawing a card from a
deck is called a probability
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experiment. ;
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An outcome is a specific 4 s
result of a single trial of a v |/ w
probability experiment.




Probability distributions
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Probability theory is the

foundation for statistical 0y . »
inference. 7 u
o \ 117
L o
0 °, /1 g 8
. \ ] Bl

A probability distribution is \\\ / } o §
a device for indicating the < nl TR
values that a random
variable may have. )1 ﬁ
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There are two categories of random
variables. These are:

odiscrete random variables,

And

ocontinuous random variables.




A discrete random variable has either a finite or
countable number of values. The values of a
discrete random variable can be plotted on a number
line with space between each point.

e
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A continuous random variable has infinitely many
values. The values of a continuous random variable
can be plotted on a line in an uninterrupted fashion.
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Discrete Random Variables Continuous Random Variables

Number of girls in a classroom Height of boys ina class
Number of blue marbles in a bag Weight of students in a class
Number of heads when flinpingacoin ~ Amount of lemonade in a jug
Number of typos on a page Time it takes to run a race




Discrete Probability Distributions

Binomial distribution — the
random variable can only assume
1 of 2 possible outcomes. There
are a fixed number of trials and
the results of the trials are

independent.

> j.e. flipping a coin and counting the
number of heads in 10 trials.

FIiD a Com

Poisson Distribution — random
variable can assume a value

between 0 and infinity.

> Counts usually follow a Poisson distribution
(i.e. number of ambulances needed in a
city in a given night)




Discrete Random Variable

A discrete random variable X has a finite number of possible values. The
probability distribution of X lists the values and their probabilities.

Value of X X1 Xo X3 w Xy
Probability P4 P> Ps3 - Pk

1. Every probability p; is a number between 0 and 1.

2. The sum of the probabilities must be 1.

Find the probabilities of any event by adding the probabilities of the
particular values that make up the event.




Example

The instructor in a large class gives 15% each of A’'s and D’s, 30% each of B's and
C’s and 10% F’s. The student’s grade on a 4-point scale is a random variable X
(A=4).

Grade F=0 D=1 C=2 B=3 A=4
Probability 0.10 .15 .30 .30 .15

What is the probability that a student selected at random will have a B or better?
ANSWER: P (grade of 3 or 4)=P(X=3) + P(X=4)
=0.3+0.15=0.45




Continuous Probability Distributions

When it follows a
Binomial or a Poisson
distribution the
variable is restricted
to taking on integer

Prob(x) Prob()

values only.
Between two values of HJ' 'Lh
a continuous random ' aal —_—
variable we can always 012345678910 J 2401 1 3
find a third. Binomial Distribution Standard Normal Distribution
Discrete Data & Discrete Continuous Data and Continuous
Probability Curve Probability Curve



Continuous Probability Distributions

4

Experiments can lead to continuous responses i.e. values
that do not have to be whole numbers.For example:
height could be |1.54 meters etc.

In such cases the sample space is best viewed as a
histogram of responses.

The Shape of the histogram of such responses tells us
what continuous distribution is appropriate — there are
many.
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A histogram is used to
represent a discrete
probability distribution and
a smooth curve called the
probability density is used
to represent a continuous
probability distribution.

a) Discrete

b) Continuous




Continuous Variable

A continuous probability distribution is a
probability density function.

The area under the smooth curve is equal to 1 and
the frequency of occurrence of values between
any two points equals the total area under the
curve between the two points and the x-axis.



Normal Distribution

Also called bell shaped curve,

normal curve, or Gaussian Normal Distribution
distribution.
A normal distribution is one that is ”
unimodal, symmetric, and not too > 0'35
peaked or flat. § 030
Given its name by the French g. .
mathematician Quetelet who, in = gig
the early 19t century noted that § 3ip
many human attributes, e.g. g .
. . : . 0.05
height, weight, intelligence 000
appeared to be distributed B3 gl B0 b ko g

normally.



Normal Distribution

The normal curve is unimodal

and symmetric about its mean
(L),

In this distribution the mean,
median and mode are all
identical.

The standard deviation (o)
specifies the amount of
dispersion around the mean.

The two parameters uand o
completely define a normal
curve.




Normal Distribution

Also called a Probability The probability that X = any

: : particular value is 0.
density function. The Consequently, we talk about

probability is interpreted intervals. The probability is = to

as "area under the the area under the curve.
11
Curve. The area under the whole curve
=1.

The random variable
takes on an infinite # of
values within a given
interval



Properties of a Normal Distribution

1. Itis symmetrical about m.
2. The mean, median and mode are all equal.
3. The total area under the curve above the x-axis is 1
square unit. Therefore 50% is to the right of m and 50%
is to the left of m.
4. Perpendiculars of:
+1 s contain about 68%;
+2 s contain about 95%;
+3 s contain about 99.7%
of the area under the curve.




The Standard Normal Distribution

A normal distribution
Is determined by u and
o. This creates a
family of distributions
depending on
whatever the values

of uwand c are.

The standard normal
distribution has

u=0 and ¢ =1. ' X




Standard Z Score

The standard z score is obtained by creating a
variable z whose value is

(% - W
o

i

Given the values of u and ¢ we can convert a value
of x to a value of z and find its probability using the
table of normal curve areas.



Importance of Normal Distribution
to Statistics

="Although most distributions are not
exactly normal, most variables tend to
have approximately normal
distribution.

*Many inferential statistics assume that
the populations are distributed
normally.

*The normal curve is a probability
distribution and is used to answer
guestions about the likelihood of
getting various particular outcomes
when sampling from a population.




Why Do We Like The Normal
Distribution So Much?

There is nothing “special”
about standard normal scores
Th b df
observations fromany. NORMAL DISTRIBUTION
sample/population of continuous
data values

The score measures how far an ] =X
observation is from its mean in T
standard units of statistical X“-N(}A,G’)

distance LNW))

But, if distribution is not
normal, we may not be able
to use Z-score approach.

i 8 . .
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Normal Distribution

Q Is every variable normally

distributed? The Central Limit
A Absolutely not
Theorem...

Then why do we spend so
much time studying the

normal distribution? —_—
A Some variables are normally

distributed; a bigger reason is

the “Central Limit

Theore

Mgy R ..Clearly Explained!!




Central Limit Theorem

describes the characteristics of the
"population of the means" which
has been created from the means
of an infinite number of random
population samples of size (N), all
of them drawn from a given
"parent population".




Central Limit Theorem

It predicts that regardless of the
distribution of the parent population:

° The mean of the population of means is Central Li m it

always equal to the mean of the parent
population from which the population ( )
samples were drawn. Theorem c LT

> The standard deviation of the population

of means is always equal to the standard
deviation of the parent population

divided by the square root of the sample The principle that the

['sen-tral ‘li-mat thé-a-ram]

size (N). distribution of sample means

o The distribution of means will approximates a normal
increasingly approximate a normal distribution as the sample
distribution as the size N of samples

size gets larger, regardless of
the population’s distribution.

increases.



Central Limit Theorem

A consequence of Central Limit Theorem is that if .

we average measurements of a particular quantity, CenTrG| |.|m|1' Theorem
the distribution of our average tends toward a
normal one.

In addition, if a measured variable is actually a

combination of several other uncorrelated variables, 1)

all of them "contaminated" with a random error of J —

any distribution, our measurements tend to be T

contaminated with a random error that is normally \/ﬁ

distributed as the number of these variables

increases. Thus, the Central Limit Theorem explains =

the ubiquity of the famous bell-shaped "Normal D=

distribution" (or "Gaussian distribution") in the L=

measurements domain. 0-
D



CENTRAL LIMIT THEOREM

oniginal distyibution Sampling dishribution

. I |

No matter the undexlying distribution,
the sampling distibution approximates a Noymal

Sampling distnbution ~ N ( ﬂ’

365/ DataScience




Normal Distribution

Note that the normal distribution

is defined by two parameters, u Example
and o. You can draw a normal
distribution for any pand o X-u 62-5
combination. Z= o 10 12
There is one normal distribution, ZJ
that is special. It has a u =0 and | yoiaion Mo

ao=1. Thisis the Z distribution
also called the standard normal e 10
distribution. It is one of trillions '
of normal distributions we
could have selected.

o=1




Standard Normal Variable

It is customary to call a standard
normal random variable Z.

The outcomes of the random variable Z
are denoted by z.

The table in the coming slide give the
area under the curve (probabilities)
between the mean and z.

The probabilities in the table refer to
the likelihood that a randomly selected
value Z is equal to or less than a given
value of z and greater than 0 (the mean
of the standard normal).

STANDARD NORMAL TABLE (2)

Entries in the table give the area under the curve
between the mean and z standard deviations above
the mean. For example, for z = 1.25 the area under
the curve between the mean (0) and z is 0.3944.

0.00 |

0.01 |

0.03] 004] 005] 006] 007 o0.08] 0.09

0.0000
0.0398
0.0793
0.1179
0.1554
0.1915
0.2257
0.2580
0.2881
0.3159
0.3413
0.3643
0.3849
0.4032
0.4192
0.4332
0.4452
0.4554
0.4641
0.4713
0.4772
0.4821
0.4861
0.4893
0.4918
0.4938
0.4953
0.4965
0.4974
0.4981
0.4987
0.4990
0.4993
0.4995
0.4997

0.0040
0.0438
0.0832
0.1217
0.1591
0.1950
0.2291
0.2611
0.2910
0.3186
0.3438
0.3665
0.3869
0.4049
0.4207
0.4345
0.4463
0.4564
0.4649
0.4719
0.4778
0.4826
0.4864
0.4896
0.4920
0.4940
0.4955
0.4966
0.4975
0.4982
0.4987
0.4991
0.4993
0.4995
0.4997

0.02 |
0.0080
0.0478
0.0871
0.1255
0.1628
0.1985
0.2324
0.2642
0.2939
03212
0.3461
0.3686
0.3888
0.4066
0.4222
0.4357
0.4474
0.4573
0.4656
0.4726
04783
0.4830
0.4868
0.4898
0.4922
0.4941
0.4956
0.4967
0.4976
0.4982
0.4987
0.4991
0.4994
0.4995
0.4997

0.0120 0.0160 0.0190 0.0239 0.0279 0.0319 0.0359
0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.2969 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
0.3485 0.3508 0.3513 0.3554 0.3577 0.3529 0.3621
0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
0.4082 0.4099 04115 04131 0.4147 04162 0.4177
0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993
0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995
0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997
0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998




Table of Normal Curve Areas

TABLE B Normal Curve Areas F'{z = =), Entrdes in the Body of

the Table Are Areas Beiween —= and = TABLE B |continued )
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Standard Normal Distribution

50% of probability in
here —probability=0.5

50% of probability in
here—probability=0.5




Standard Normal Distribution

95% of
probability
in here

2.5% of probability
in here

2.5% of
probability in here

Standard Normal
Distribution with 95% area
marked




Calculating Probabilities

. Standard Normal Distribution u=0]o=1
Probability calculations are
always concerned with finding
the probability that the variable
assumes any value in an interval 3
between two specific points a g
and b. i
The probability that a continuous
variable assumes the a value
between a and b is the area :
Under the graph Of the density 35 30 25 20 -=1.5: 40 5 0 & 1D : 1? 20 25 30 35
between g and b. e az<zezea0n
............ A.64<Z<1.64290% wme ‘
] --------------------- 1.96<Z<1.96=95% wnwnnrnrnn : i
T 258<Z <2582 99% o



Finding Probabilities

(a) What is the probability that z < -1.967
(1) Sketch a normal curve
(2) Draw a line for z =-1.96
(3) Find the area in the table
(4) The answer is the area to the left of the line P(z < -

1.96) = .0250



0 1.96 x
z —009 — 008 —0.07 —0.06 —0.05 —0.04 —0.03 —0.02 —0.01 0.00 =z
— 3.80 .0001 .0001 .0001 |.0001 | .0001 .0001 .0001 .0001 .0001 .00DI —3.80
—3.70 000f 0001 .0001 |.0001 | .0001 .0001 .0001 .0001 .0001 .0001 —3.70
—3.60 0001 .0001 0001 |.0001 | .0001 0001 .0001 .0001 .0D02 .0002 —3.60
—3.50 0002 0002 .0002 |0002 | .0002 0002 0002 .0002 .0002 .0002 —3.50
—3.40 G002 0003 0003 |.0003 | 0003 0003 .0003 .0003 .0003 .0003 —3.40
— 3% QD3 0004 0004 |.0004 | 0004 OOO4 .0004 .0005 .0005 .0005 —3.30
—390 G005 .0005 .0005 |.0006 | 0006 .0006 .0006 .0006 .0007 .0007 —3.20
—3 40 0007 .0007 .0008 |.0008 | .0008 .0008 .0009 .0009 .0009 .0010 —3.10
—3.00 @OU0 0010 0011 0011 | 001l L0012 .0012 .0013 .0013 .0013 —3.00
—2.a3 G014 .OOl4 .0015 |.0015| .0016 .0016 .0017 .0018 .0018 .0019 —2.90
—280 0019 .0020 .0021 |.0021 | .0022 .0023 .0023 .0024 .0025 .0026 —%.80
—2.70 @026 0027 .0028 [.0029 | .0030 .0031 .0032 .0033 .0034 .0035 —2.70
—2.60 0036 0037 .0038 |.0039 | .0040 .0041 .0043 .0044 .0045 .0047 —2.60
— 9250 Q048 0049 .0051 |.0052 | .0054 .0055 .0057 .0059 .0060 .0062 —2.50
—9 40 .G06¢ 0066 .0068 |.0069 | .0071 .0073 .0075 .0078 .0OBO .0082 —2.40
— 930 Q08¢ 0087 .0089 |.0091 | .0094 .0096 .0099 0102 .0104 .0107 —2.30
—2.9%9 .@I1® 0113 .0116 [.0119 ]| .0122 .0125 .0129 .0132 .0136 .0139 —2.20
—2.10 0143 .0i46 0150 |.0154 | .0158 .0162 .0l166 .0170 .0l74 .0179 —2.10
—200 0183 0188 0192 |.0197 ] .0202 .0207 .0212 .0217 .0222 0228 —2.00
—1.90 0233 0039 0244 |.0250] 0256 .0262 .0268 .0274 .0281 .0287 —1.00
—1.80 .029¢ 0301 0307 |.0314 | .0322 .0329 .0336 .0344 .0351 .0359 —1.80
—1.70 .0367 0375 0384 |.0392 | .0401 .0409 .0418 .0427 .0436 - .0446 —1.70
—1.60 0455 0465 0475 |.0485| 0495 .0505 .0516 .0526 .0537 .0548 34 1.60




Finding Probabilities

0250

z=-1.96 },I,




Finding Probabilities

(b) What is the probability that -1.96 <z < 1.96?
(1) Sketch a normal curve

(2) Draw lines for lower z =-1.96, and

upperz=1.96
(3) Find the area in the table corresponding to each value
(4) The answer is the area between the values.

Subtract lower from upper:
P(-1.96 <z<1.96) =.9750 - .0250 = .9500



TABLE I (continued)
L e I,
z 0.00 001 002 003 004 005 (006 007 0.08 0.09 z

0.00 5000 5040 5080 .5120 5160 .5199 (5239 | .5279 5319 .5359 0.00
0.10 5398 5438 5478 5517 .5557 .5596 |.5636 | .5675 .3714 .5753 0.10
0.20 5793 5832 5871 2910 5948 5987 (6026 | 6064 6103 .6141 0.20
0.30 6179 6217 6255 .6293 6331 .6368 |6406| .6443 6480 6517 0.30
040 .6554 .6591 .6628 .6664 6700 6736 |.6772| .6B08 .6B44 6879 0.40
0.50 6915 6950 .6985 .7019 .7054 .7088 |.7123| .7157 .7190 .7224 0.50
0.60 7257 7291 7324 V357 .7389 7422 |. 7454 | .7486 .7517 .7549 0.60
0.70 .7580 7611 7642 7673 7704 7734 7764 | 7794 7B23 .7B5Z 0.70
0.80 7881 7910 .7939 .7967 .7995 8023 |.8051  .8078 A8B106 _.B133 0.80
090 .B8I59 .Bl186 .B212 8238 .8264 .8289 |[8315| .8340 .8365 .8389 090
1.00 .8413 .8438 .8461 .B485 .8508 .B531 |.B554 | .B577 B399 B621 1.00
1.10 .8B643 _.B665 .8686 .8708 8729 8749 [(B770| .B790 8810 .8830 1.10
1.20 .BB49 .B8B69 .8888 8907 .8925 8944 (8962 | .8980 .8997 .9015 1.20
1.30 .9032 9049 9066 .9082 .9099 9115 [9131 | .9147 .9162 9177 1.30
1.40 .9192 9207 .9222 9236 9251 .9265 (9279 | 9292 9306 .9319 1.40
1.50 .9332 9345 9357 9370 .9382 .9394 |.9406 | .9418 .9429 9441 1.50
1.60 .9452 9463 .9474 9484 9495 9505 [.9515 | 9525 9535 9545 1.60
1.70 .9554 .9564 9573 .9582 9591 .9599 (9608 | 9616 9625 .9633 1.70
1.80 9641 9649 9656 9664 9671 9678 [968B6 | 9693 9699 .9706 .80

Ii 1.90 9713 9719 9726 9732 9738 9744 |.9750| .9756 9761 .9767 1.90
2,00 9772 9778 9783 9788 9793 9798 (9803 | 9808 .9812 9817 2.00
2.10 .9821 .9826 .9830 .9834 9838 .9842 |.9846 | .9850 .9854 .9857 2.10
2.20 9861 9864 9868 9871 9875 9878 |9881 | 9884 9887 .9890 2.20
230 .9893 9896 9898 .9901 9904 9906 |.9909 | 9911 9913 9916 2.30
240 9918 .9920 .9922 9925 9927 9929 (9931 | .9932 .9934 ,993%/ 2.




Finding Probabilities




Finding Probabilities

(c) What is the probability that z > 1.967?

(1) Sketch a normal curve

(2) Draw a line for z=1.96

(3) Find the area in the table

(4) The answer is the area to the right of the
line. Itis found by subtracting the table value
from 1.0000:

P(z > 1.96) =1.0000 - .9750 =.0250



Finding Probabilities

0250

H' z=1.96




Example: Weight

If the weight of males is N.D.
with u=150 and 0=10, what is
the probability that a randomly
selected male will weigh
between 140 |bs and 155 Ibs?

[Important Note: Always remember
that the probability that X is equal to
any one particular value is zero,
P(X=value) =0, since the normal
distribution is continuous.]

0.4

0.3

8.0.2

0.1




Example: Weight

Solution:

140 150 155 X

N

Z =(140—-150)/ 10 =-1.00 s.d. from mean
Area under the curve = .3413 (from Z table)
Z =(155—150) / 10 =+.50 s.d. from mean

Area under the curve =.1915 (from Z table)

Answer: .3413 +.1915 =.5328




Example: 1Q

If 1Q is ND with a mean of 100 and a S.D. of 10, what
percentage of the population will have

(2)1Qs ranging from 90 to 1107
(b)IQs ranging from 80 to 1207
Solution:
Z=(90-100)/10=-1.00
Z=(110-100)/ 10 =+1.00

Area between 0 and 1.00 in the Z-table is .3413; Area
between 0 and -1.00 is also .3413 (Z-distribution is
symmetric).

Answer to part (a) is .3413 + .3413 = .6826.



Example: 1Q

(b) 1Qs ranging from 80 to 1207
Solution:
Z=(80-100)/10=-2.00
Z=(120-100)/ 10 =+2.00

Area between =0 and 2.00 in the Z-table is .4772; Area between 0 and -
2.00is also .4772 (Z-distribution is symmetric).

Answer is .4772 + .4772 = .9544,



