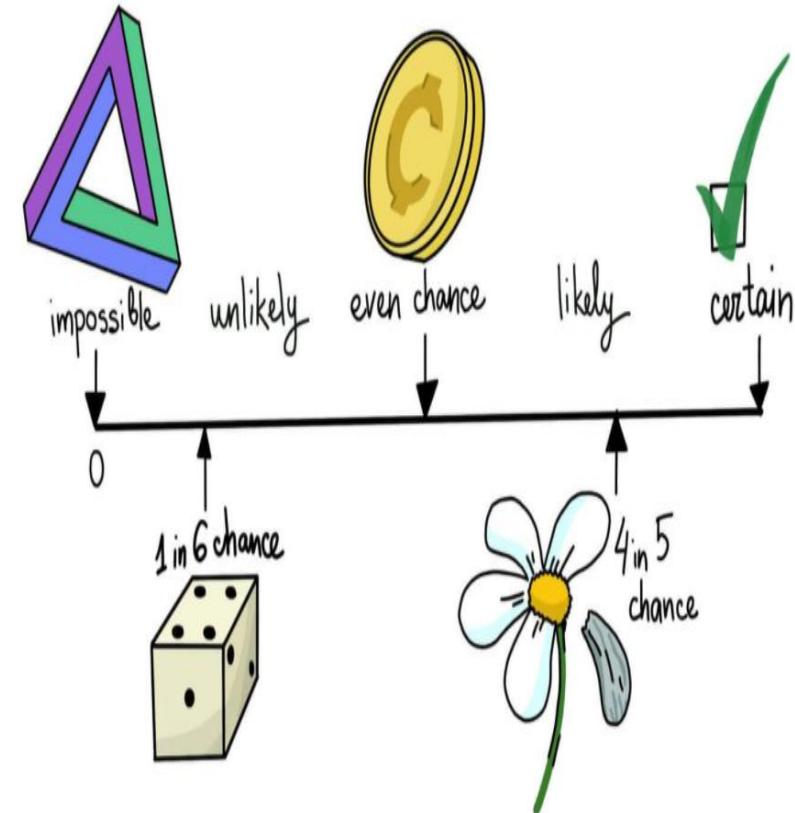


Unit 3

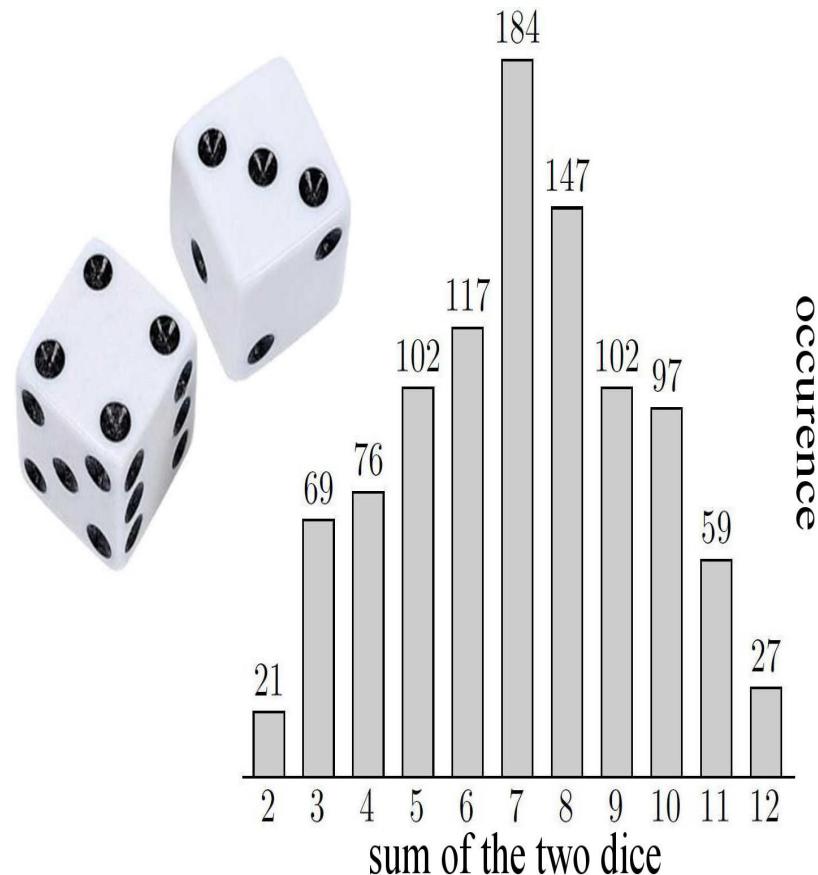
Probability


ASSOCIATE PROFESSOR DIANA ARABIAT, RN, PHD

Probability

Probability theory

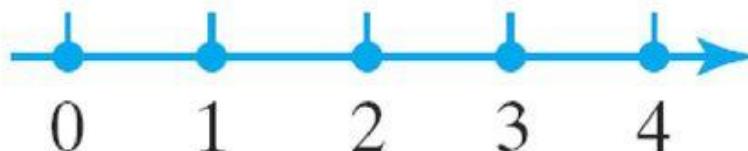
developed from the study of games of chance like dice and cards. A process like flipping a coin, rolling a die or drawing a card from a deck is called a probability experiment.


An outcome is a specific result of a single trial of a probability experiment.

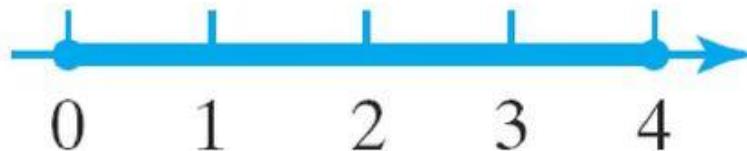
Probability distributions

Probability theory is the foundation for statistical inference.

A probability distribution is a device for indicating the values that a random variable may have.


There are two categories of random variables. These are:

- *discrete random variables,*


And

- *continuous random variables.*

A **discrete random variable** has either a finite or countable number of values. The values of a discrete random variable can be plotted on a number line with space between each point.

A **continuous random variable** has infinitely many values. The values of a continuous random variable can be plotted on a line in an uninterrupted fashion.

Discrete Random Variables

Number of girls in a classroom

Number of blue marbles in a bag

Number of heads when flipping a coin

Number of typos on a page

Continuous Random Variables

Height of boys in a class

Weight of students in a class

Amount of lemonade in a jug

Time it takes to run a race

Discrete Probability Distributions

Binomial distribution – the random variable can only assume 1 of 2 possible outcomes. There are a fixed number of trials and the results of the trials are independent.

- i.e. flipping a coin and counting the number of heads in 10 trials.

Flip a Coin

Poisson Distribution – random variable can assume a value between 0 and infinity.

- Counts usually follow a Poisson distribution (i.e. number of ambulances needed in a city in a given night)

Discrete Random Variable

A discrete random variable X has a finite number of possible values. The probability distribution of X lists the values and their probabilities.

Value of X	x_1	x_2	x_3	...	x_k
Probability	p_1	p_2	p_3	...	p_k

1. Every probability p_i is a number between 0 and 1.
2. The sum of the probabilities must be 1.

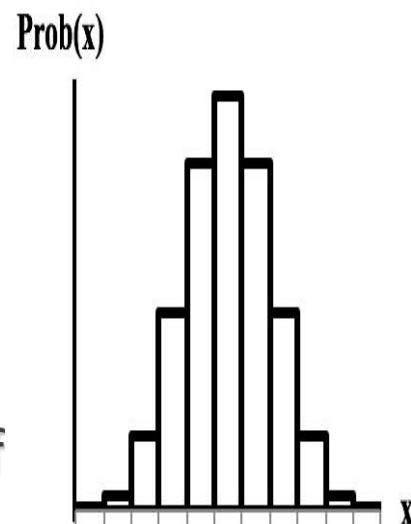
Find the probabilities of any event by adding the probabilities of the particular values that make up the event.

Example

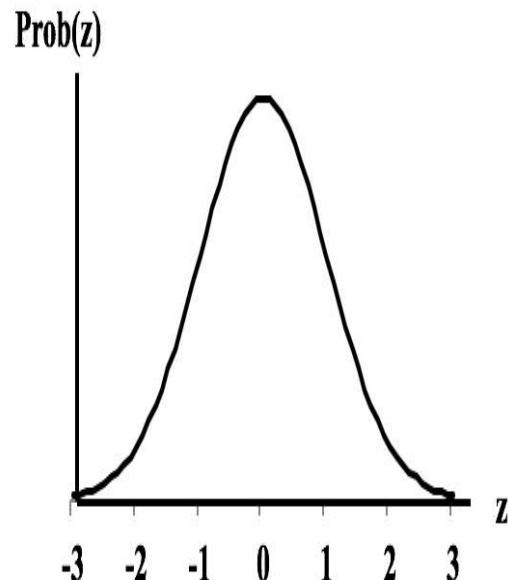
The instructor in a large class gives 15% each of A's and D's, 30% each of B's and C's and 10% F's. The student's grade on a 4-point scale is a random variable X (A=4).

Grade	F=0	D=1	C=2	B=3	A=4
Probability	0.10	.15	.30	.30	.15

What is the probability that a student selected at random will have a B or better?

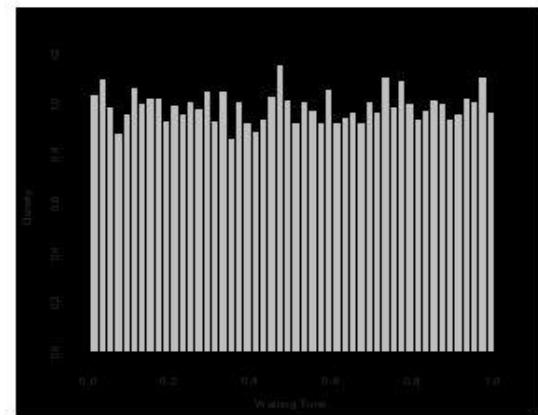
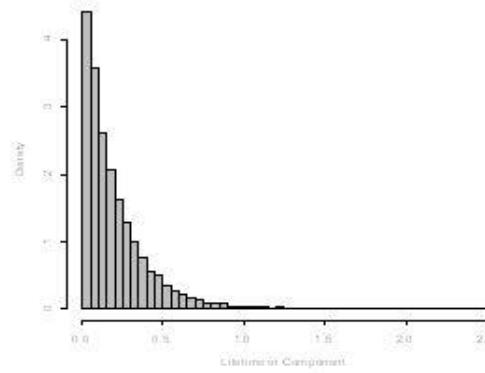
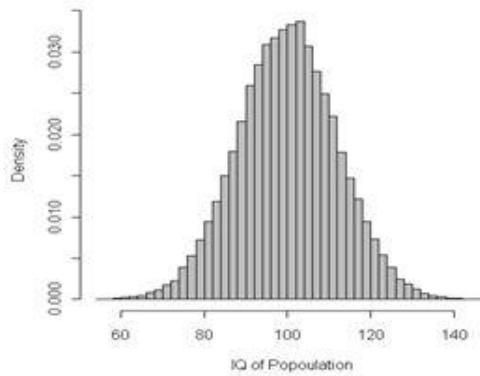

ANSWER: $P(\text{grade of 3 or 4}) = P(X=3) + P(X=4)$

$$= 0.3 + 0.15 = 0.45$$

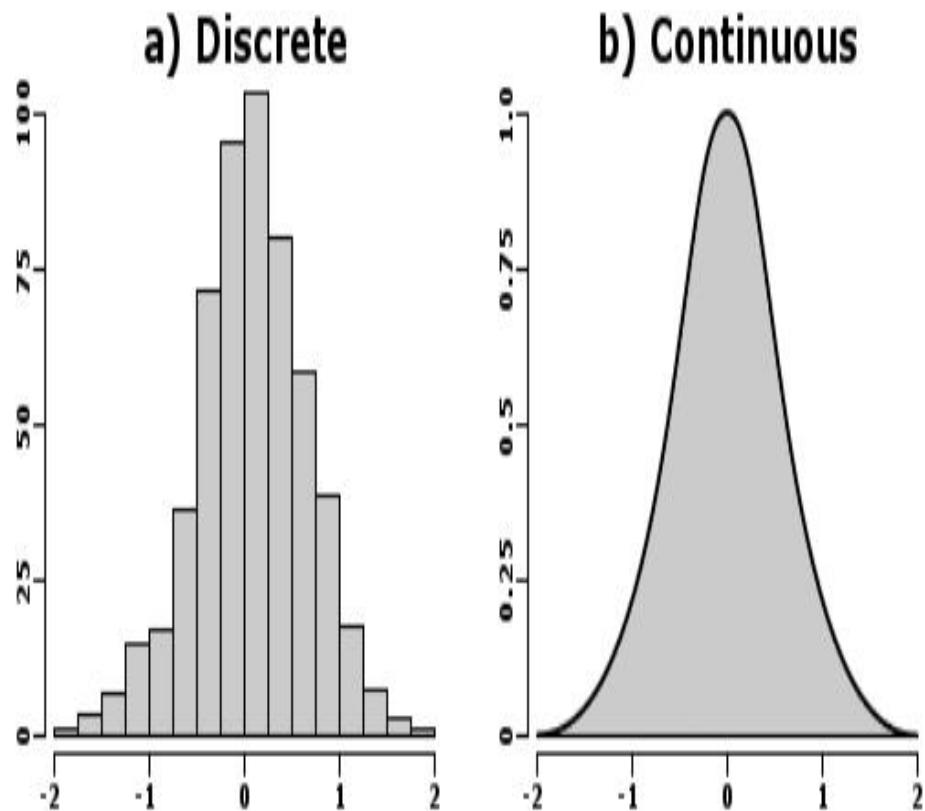

Continuous Probability Distributions

When it follows a Binomial or a Poisson distribution the variable is restricted to taking on integer values only.

Between two values of a continuous random variable we can always find a third.




Binomial Distribution
Discrete Data & Discrete
Probability Curve

Standard Normal Distribution
Continuous Data and Continuous
Probability Curve


Continuous Probability Distributions

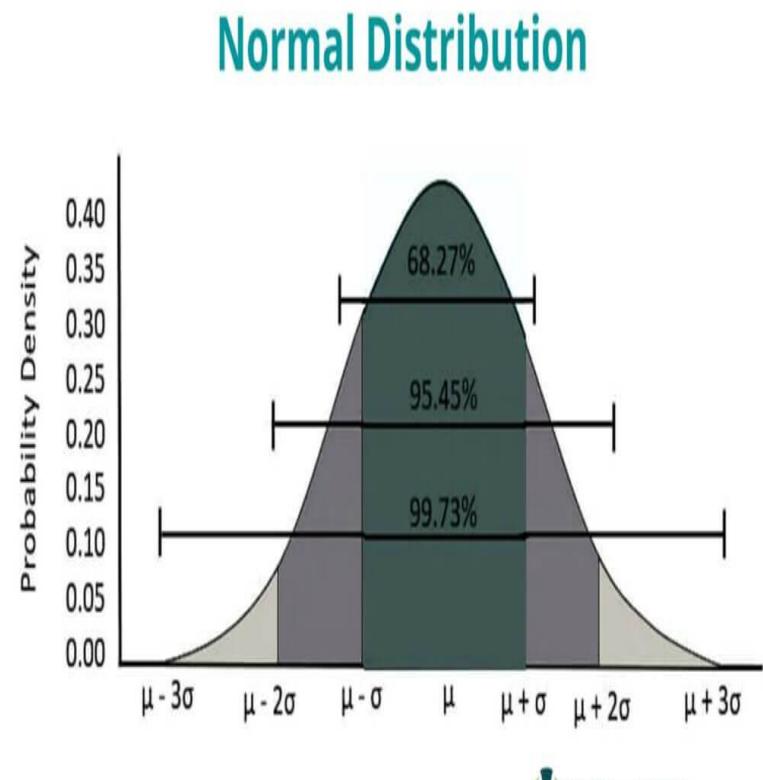
- ▶ Experiments can lead to continuous responses i.e. values that do not have to be whole numbers. For example: height could be 1.54 meters etc.
- ▶ In such cases the sample space is best viewed as a histogram of responses.
- ▶ The Shape of the histogram of such responses tells us what continuous distribution is appropriate – there are many.

A histogram is used to represent a discrete probability distribution and a smooth curve called the *probability density* is used to represent a continuous probability distribution.

Continuous Variable

A continuous probability distribution is a probability density function.

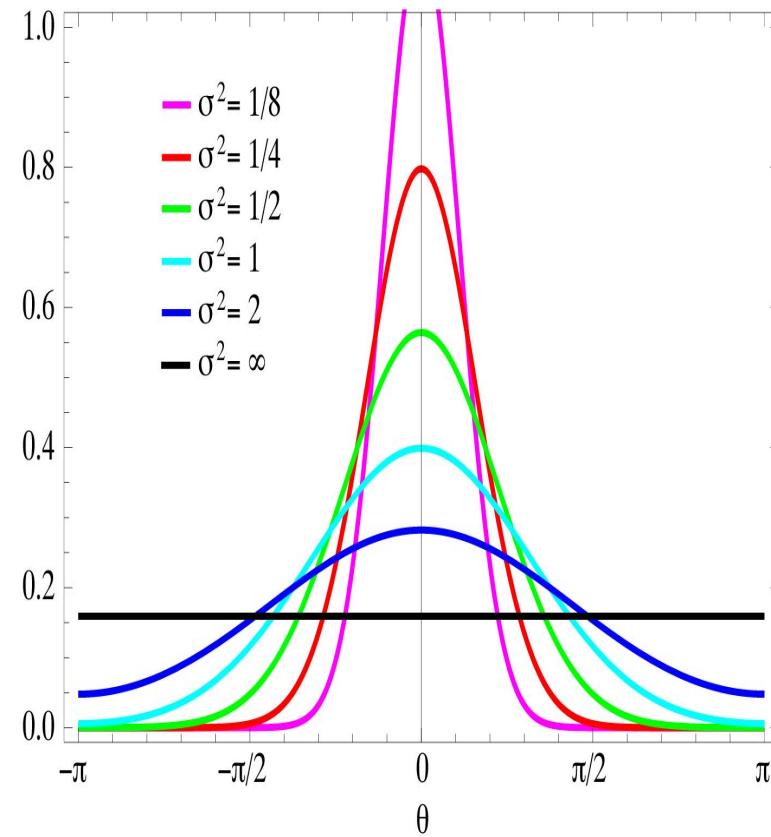
The area under the smooth curve is equal to 1 and the frequency of occurrence of values between any two points equals the total area under the curve between the two points and the x-axis.


Normal Distribution

Also called bell shaped curve, normal curve, or Gaussian distribution.

A normal distribution is one that is unimodal, symmetric, and not too peaked or flat.

Given its name by the French mathematician Quetelet who, in the early 19th century noted that many human attributes, e.g. height, weight, intelligence appeared to be distributed normally.


Normal Distribution

The normal curve is unimodal and symmetric about its mean (μ).

In this distribution the mean, median and mode are all identical.

The standard deviation (σ) specifies the amount of dispersion around the mean.

The two parameters μ and σ completely define a normal curve.

Normal Distribution

Also called a Probability density function. The probability is interpreted as "area under the curve."

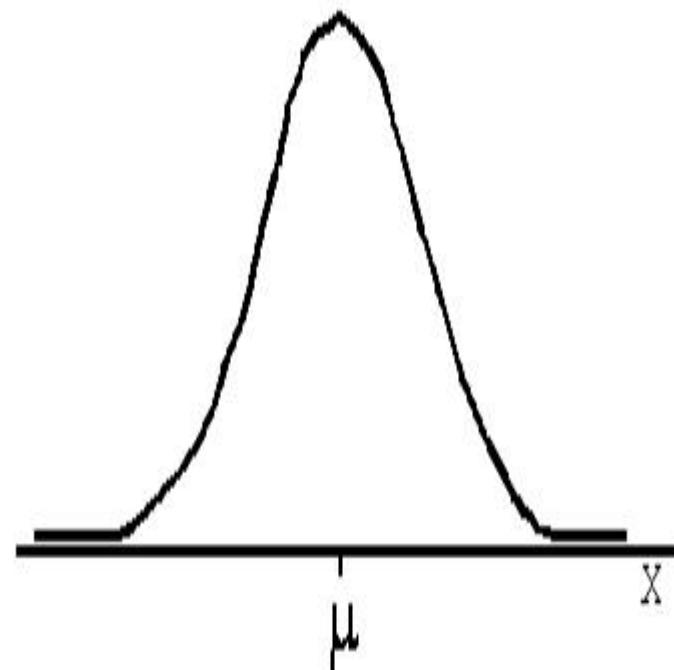
The random variable takes on an infinite # of values within a given interval

The probability that $X = \text{any particular value}$ is 0. Consequently, we talk about intervals. The probability is = to the area under the curve.

The area under the whole curve = 1.

Properties of a Normal Distribution

1. It is symmetrical about m .
2. The mean, median and mode are all equal.
3. The total area under the curve above the x-axis is 1 square unit. Therefore 50% is to the right of m and 50% is to the left of m .
4. Perpendiculars of:
 - $\pm 1 s$ contain about 68%;
 - $\pm 2 s$ contain about 95%;
 - $\pm 3 s$ contain about 99.7%of the area under the curve.


The Standard Normal Distribution

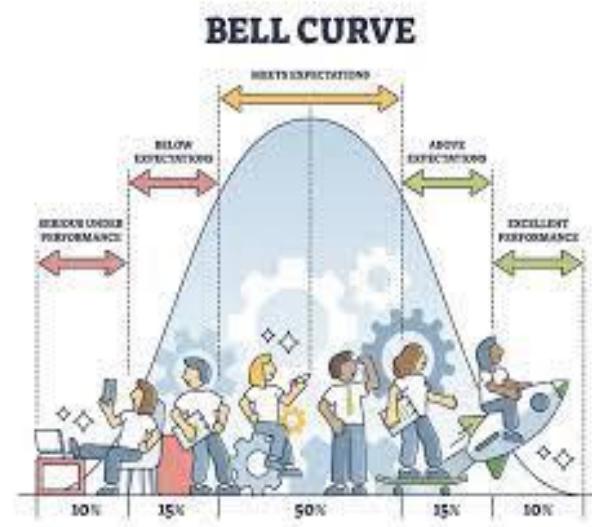
A normal distribution is determined by μ and σ . This creates a family of distributions depending on whatever the values of μ and σ are.

The standard normal distribution has

$\mu=0$ and $\sigma=1$.

Standard Z Score

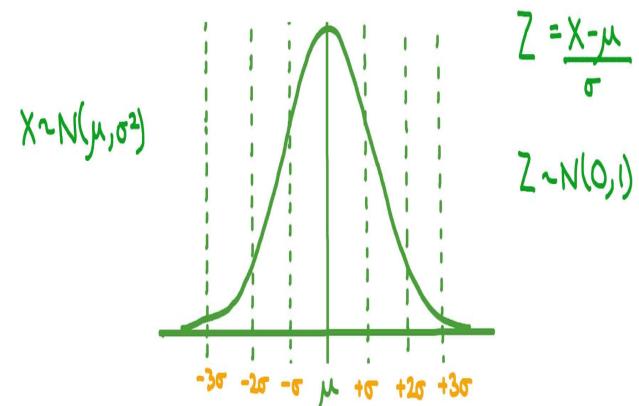
The standard z score is obtained by creating a variable z whose value is


$$z = \frac{(x - \mu)}{\sigma}$$

Given the values of μ and σ we can convert a value of x to a value of z and find its probability using the table of normal curve areas.

Importance of Normal Distribution to Statistics

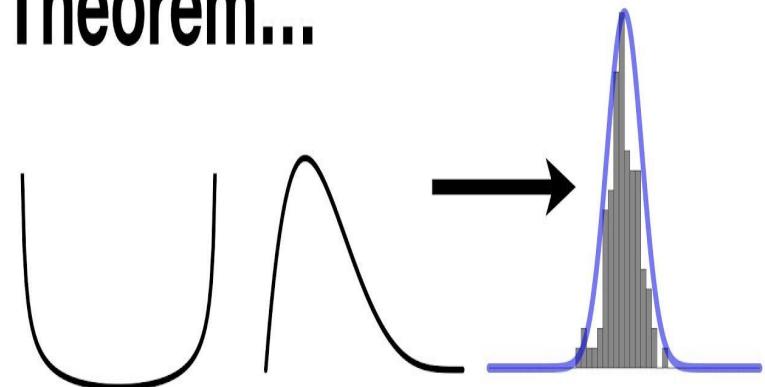
- Although most distributions are not exactly normal, most variables tend to have approximately normal distribution.
- Many inferential statistics assume that the populations are distributed normally.
- The normal curve is a probability distribution and is used to answer questions about the likelihood of getting various particular outcomes when sampling from a population.


Why Do We Like The Normal Distribution So Much?

There is nothing “special” about standard normal scores

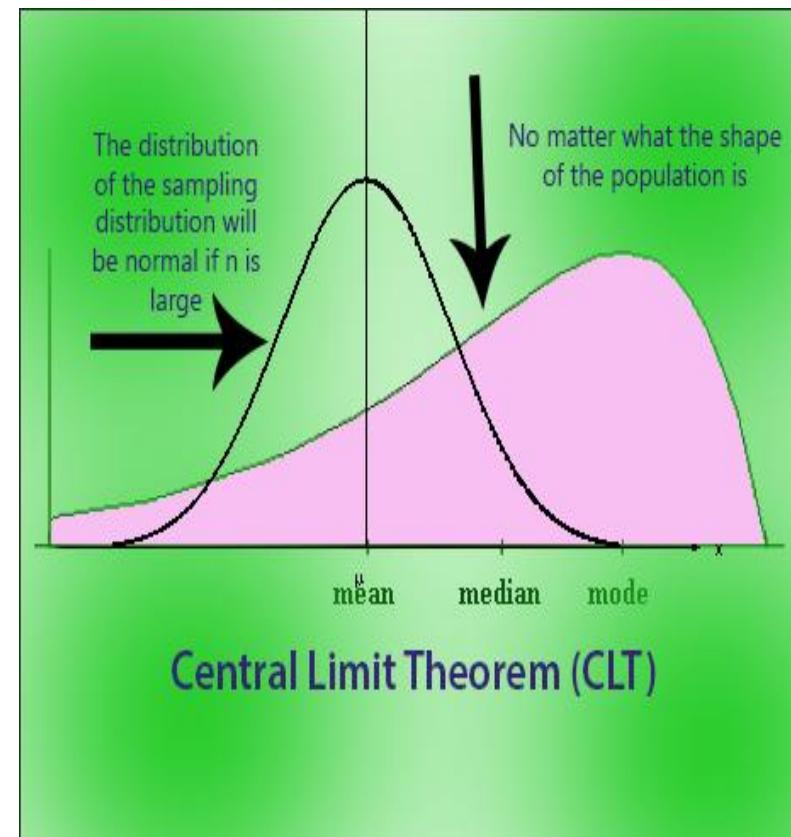
- These can be computed for observations from any sample/population of continuous data values
- The score measures how far an observation is from its mean in standard units of statistical distance

But, if distribution is not normal, we may not be able to use Z-score approach.


NORMAL DISTRIBUTION

Normal Distribution

- Q** Is every variable normally distributed?
- A** Absolutely not
- Q** Then why do we spend so much time studying the normal distribution?
- A** Some variables are normally distributed; a bigger reason is the “Central Limit Theorem”!!!!!!???????


The Central Limit Theorem...

...Clearly Explained!!!

Central Limit Theorem

describes the characteristics of the **"population of the means"** which has been created from the means of an infinite number of random population samples of size (N), all of them drawn from a given **"parent population"**.

Central Limit Theorem

It predicts that regardless of the distribution of the parent population:

- The **mean** of the population of means is always equal to the mean of the parent population from which the population samples were drawn.
- The **standard deviation** of the population of means is always equal to the standard deviation of the parent population divided by the square root of the sample size (N).
- The distribution of means will increasingly approximate a **normal distribution** as the size N of samples increases.

Central Limit Theorem (CLT)

[sen-trəl 'li-mət 'thē-ə-rəm]

The principle that the distribution of sample means approximates a normal distribution as the sample size gets larger, regardless of the population's distribution.

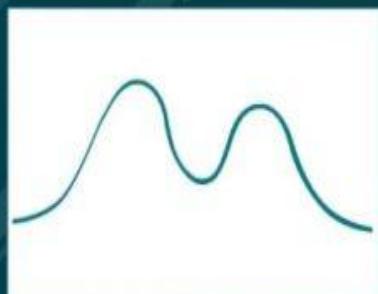
Central Limit Theorem

A consequence of Central Limit Theorem is that if we average measurements of a particular quantity, the distribution of our average tends toward a normal one.

In addition, if a measured variable is actually a combination of several other uncorrelated variables, all of them "contaminated" with a random error of any distribution, our measurements tend to be contaminated with a random error that is normally distributed as the number of these variables increases. Thus, the Central Limit Theorem explains the ubiquity of the famous bell-shaped "Normal distribution" (or "Gaussian distribution") in the measurements domain.

Central Limit Theorem

$$\mu_{\bar{x}} = \mu$$


$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

$$z = \frac{\bar{x} - \mu_x}{\sigma_{\bar{x}}}$$

CENTRAL LIMIT THEOREM

original distribution

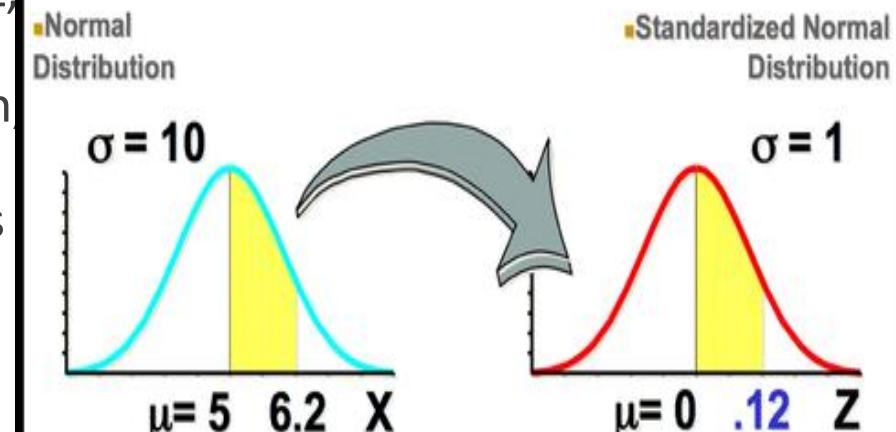
$$\mu \ \sigma^2$$

Sampling distribution

$$N\left(\mu, \frac{\sigma^2}{n}\right)$$

No matter the underlying distribution,
the sampling distribution approximates a Normal

$$\text{Sampling distribution} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

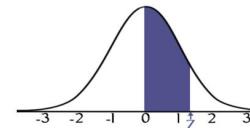

Normal Distribution

Note that the normal distribution is defined by two parameters, μ and σ . You can draw a normal distribution for any μ and σ combination.

There is one normal distribution, Z , that is special. It has a $\mu = 0$ and a $\sigma = 1$. This is the Z distribution also called the *standard normal* distribution. It is one of trillions of normal distributions we could have selected.

Example

$$Z = \frac{X - \mu}{\sigma} = \frac{6.2 - 5}{10} = .12$$

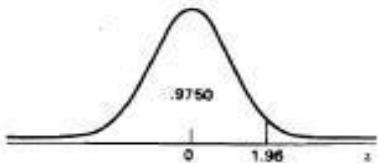

Standard Normal Variable

It is customary to call a standard normal random variable Z .

The outcomes of the random variable Z are denoted by z .

The table in the coming slide give the area under the curve (probabilities) between the mean and z .

The probabilities in the table refer to the likelihood that a randomly selected value Z is equal to or less than a given value of z and greater than 0 (the mean of the standard normal).

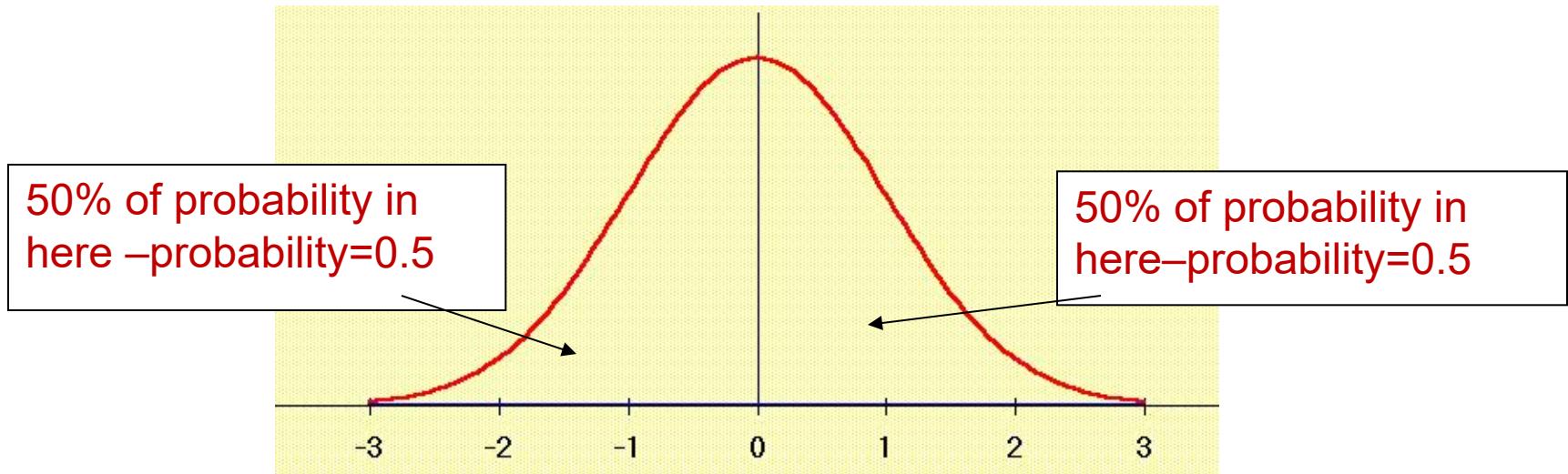

STANDARD NORMAL TABLE (Z)

Entries in the table give the area under the curve between the mean and z standard deviations above the mean. For example, for $z = 1.25$ the area under the curve between the mean (0) and z is 0.3944.

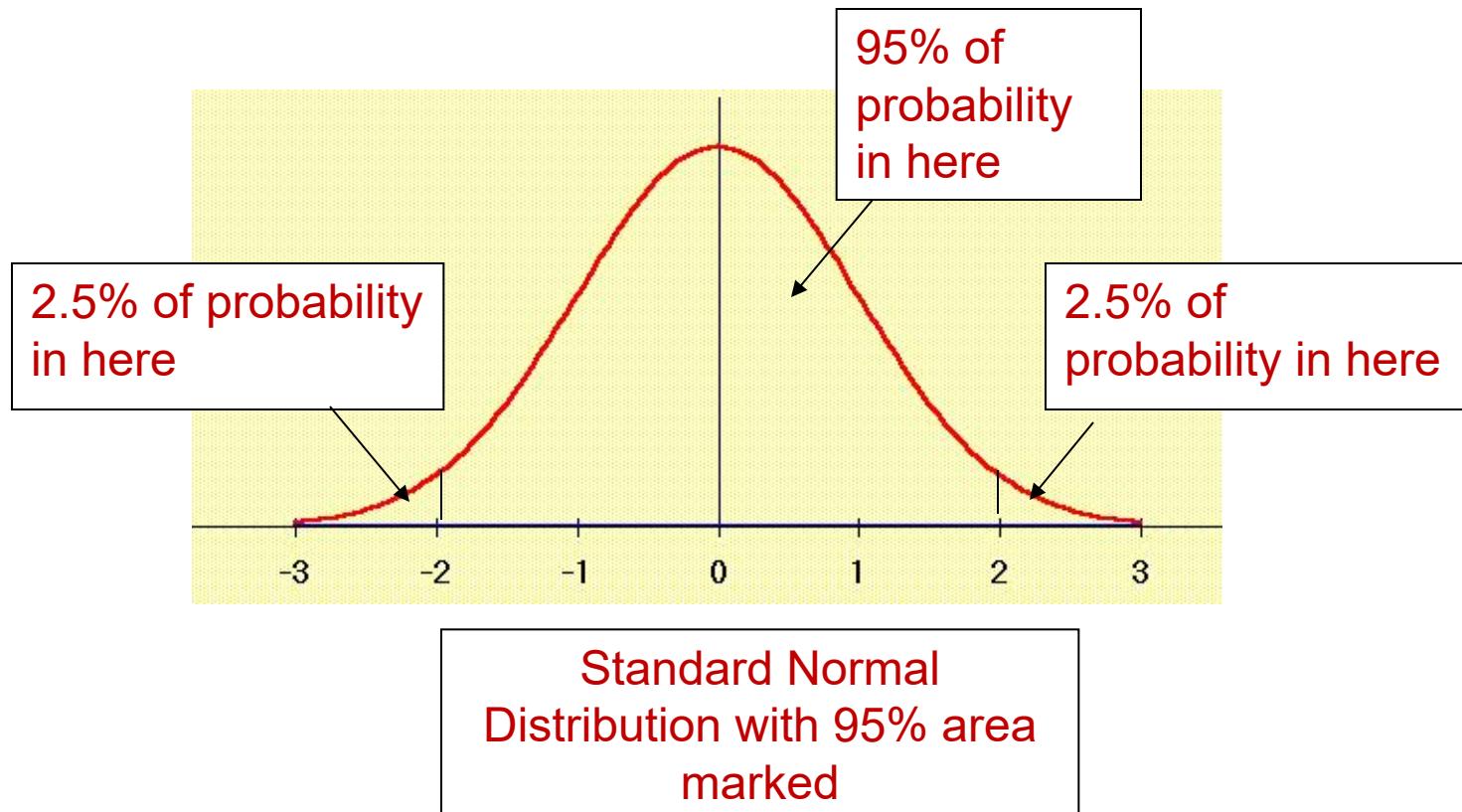
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0190	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2969	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3513	0.3554	0.3577	0.3529	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998

Table of Normal Curve Areas

TABLE D Normal Curve Areas $P(z \leq z_0)$. Entries in the Body of the Table Are Areas Between $-\infty$ and z

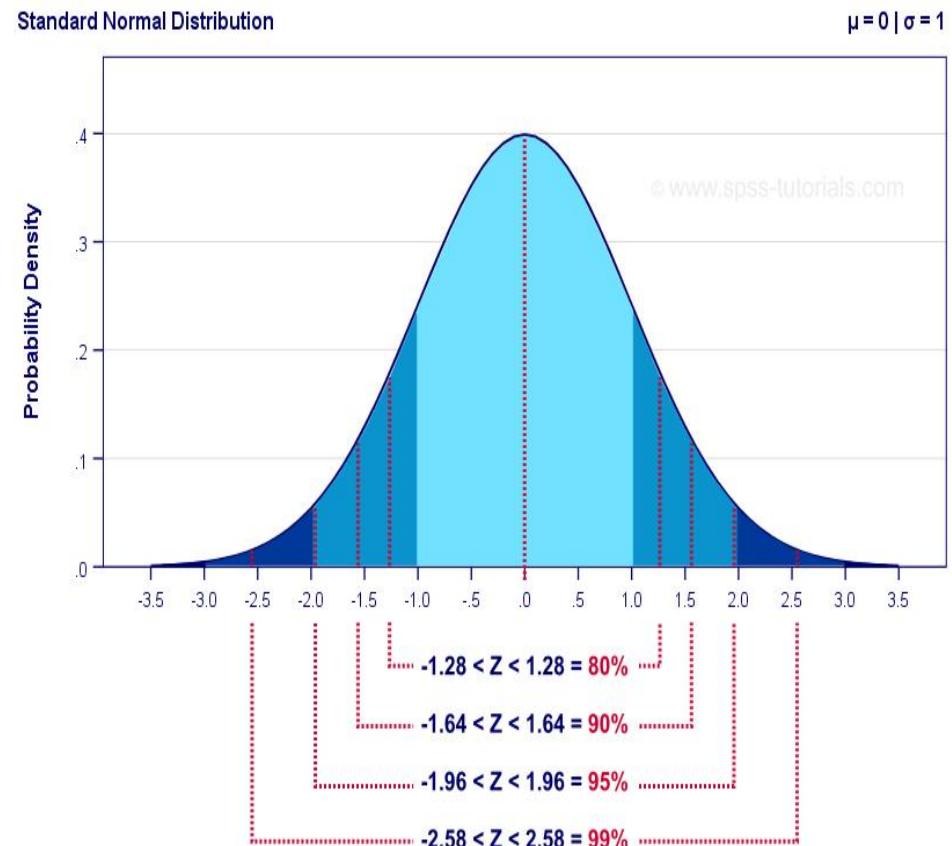


<i>z</i>	-0.99	-0.98	-0.97	-0.96	-0.95	-0.94	-0.93	-0.92	-0.91	0.00	<i>z</i>
-3.80	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	-3.80
-3.70	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	-3.70
-3.60	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0002	-3.60
-3.50	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	-3.50
-3.40	.0002	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	-3.40
-3.30	.0003	.0004	.0004	.0004	.0004	.0004	.0005	.0005	.0005	.0005	-3.30
-3.20	.0005	.0005	.0006	.0006	.0006	.0006	.0006	.0007	.0007	.0007	-3.20
-3.10	.0007	.0007	.0008	.0008	.0008	.0008	.0009	.0009	.0009	.0010	-3.10
-3.00	.0009	.0010	.0011	.0011	.0012	.0012	.0013	.0013	.0013	.0013	-3.00
-2.90	.0014	.0014	.0015	.0015	.0016	.0016	.0018	.0018	.0019	.0019	-2.90
-2.80	.0019	.0020	.0021	.0022	.0023	.0023	.0024	.0025	.0026	.0026	-2.80
-2.70	.0026	.0027	.0028	.0029	.0030	.0031	.0032	.0033	.0034	.0035	-2.70
-2.60	.0036	.0037	.0038	.0039	.0040	.0041	.0043	.0044	.0045	.0047	-2.60
-2.50	.0048	.0049	.0051	.0052	.0054	.0055	.0057	.0059	.0060	.0062	-2.50
-2.40	.0054	.0066	.0068	.0069	.0071	.0073	.0075	.0078	.0080	.0082	-2.40
-2.30	.0064	.0087	.0089	.0091	.0094	.0096	.0099	.0102	.0104	.0107	-2.30
-2.20	.0118	.0113	.0116	.0119	.0122	.0125	.0129	.0132	.0136	.0139	-2.20
-2.10	.0145	.0146	.0150	.0154	.0158	.0162	.0166	.0170	.0174	.0179	-2.10
-2.00	.0183	.0188	.0192	.0197	.0202	.0207	.0212	.0217	.0222	.0228	-2.00
-1.90	.0239	.0239	.0244	.0250	.0256	.0262	.0268	.0274	.0281	.0287	-1.90
-1.80	.0294	.0304	.0307	.0314	.0322	.0329	.0336	.0344	.0351	.0359	-1.80
-1.70	.0367	.0375	.0384	.0392	.0401	.0409	.0418	.0427	.0436	.0446	-1.70
-1.60	.0455	.0465	.0475	.0485	.0495	.0505	.0516	.0526	.0537	.0548	-1.60
-1.50	.0559	.0571	.0582	.0594	.0606	.0618	.0630	.0643	.0655	.0668	-1.50
-1.40	.0681	.0694	.0708	.0721	.0735	.0749	.0764	.0778	.0793	.0808	-1.40
-1.30	.0823	.0838	.0853	.0868	.0885	.0901	.0918	.0934	.0951	.0968	-1.30
-1.20	.0983	.1003	.1020	.1038	.1056	.1075	.1093	.1112	.1131	.1151	-1.20
-1.10	.1170	.1190	.1210	.1238	.1251	.1271	.1292	.1314	.1335	.1357	-1.10
-1.00	.1379	.1401	.1423	.1445	.1469	.1491	.1515	.1539	.1562	.1587	-1.00
-0.90	.1611	.1635	.1660	.1685	.1711	.1736	.1762	.1788	.1814	.1841	-0.90
-0.80	.1867	.1894	.1922	.1949	.1977	.2005	.2033	.2061	.2090	.2119	-0.80
-0.70	.2148	.2177	.2206	.2236	.2266	.2296	.2327	.2358	.2389	.2420	-0.70
-0.60	.2451	.2483	.2514	.2546	.2578	.2611	.2643	.2676	.2709	.2743	-0.60
-0.50	.2776	.2810	.2843	.2877	.2912	.2946	.2981	.3015	.3050	.3085	-0.50
-0.40	.3121	.3156	.3192	.3228	.3264	.3300	.3336	.3372	.3409	.3446	-0.40
-0.30	.3483	.3520	.3557	.3594	.3632	.3669	.3707	.3745	.3783	.3821	-0.30
-0.20	.3859	.3897	.3936	.3974	.4013	.4052	.4090	.4129	.4168	.4207	-0.20
-0.10	.4247	.4286	.4325	.4364	.4404	.4443	.4483	.4522	.4562	.4602	-0.10
0.00	.4641	.4681	.4721	.4761	.4801	.4840	.4880	.4920	.4960	.5000	0.00


TABLE D (continued)

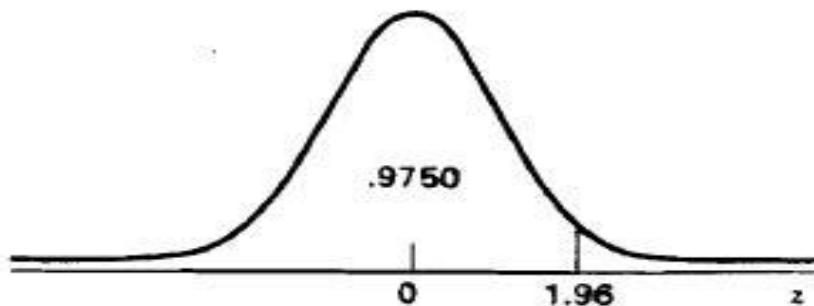
<i>z</i>	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	<i>z</i>
0.00	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359	0.00
0.10	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753	0.10
0.20	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141	0.20
0.30	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517	0.30
0.40	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879	0.40
0.50	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224	0.50
0.60	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549	0.60
0.70	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852	0.70
0.80	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133	0.80
0.90	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389	0.90
1.00	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621	1.00
1.10	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830	1.10
1.20	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015	1.20
1.30	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177	1.30
1.40	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319	1.40
1.50	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441	1.50
1.60	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545	1.60
1.70	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633	1.70
1.80	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706	1.80
1.90	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767	1.90
2.00	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817	2.00
2.10	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857	2.10
2.20	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890	2.20
2.30	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916	2.30
2.40	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936	2.40
2.50	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952	2.50
2.60	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964	2.60
2.70	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974	2.70
2.80	.9974	.9975	.9976	.9977	.9978	.9979	.9979	.9980	.9981	.9981	2.80
2.90	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986	2.90
3.00	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990	3.00
3.10	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993	3.10
3.20	.9993	.9993	.9993	.9994	.9994	.9994	.9994	.9995	.9995	.9995	3.20
3.30	.9995	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9997	3.30
3.40	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998	3.40
3.50	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	3.50
3.60	.9998	.9998	.9998	.9999	.9999	.9999	.9999	.9999	.9999	.9999	3.60
3.70	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	3.70
3.80	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	3.80

Standard Normal Distribution

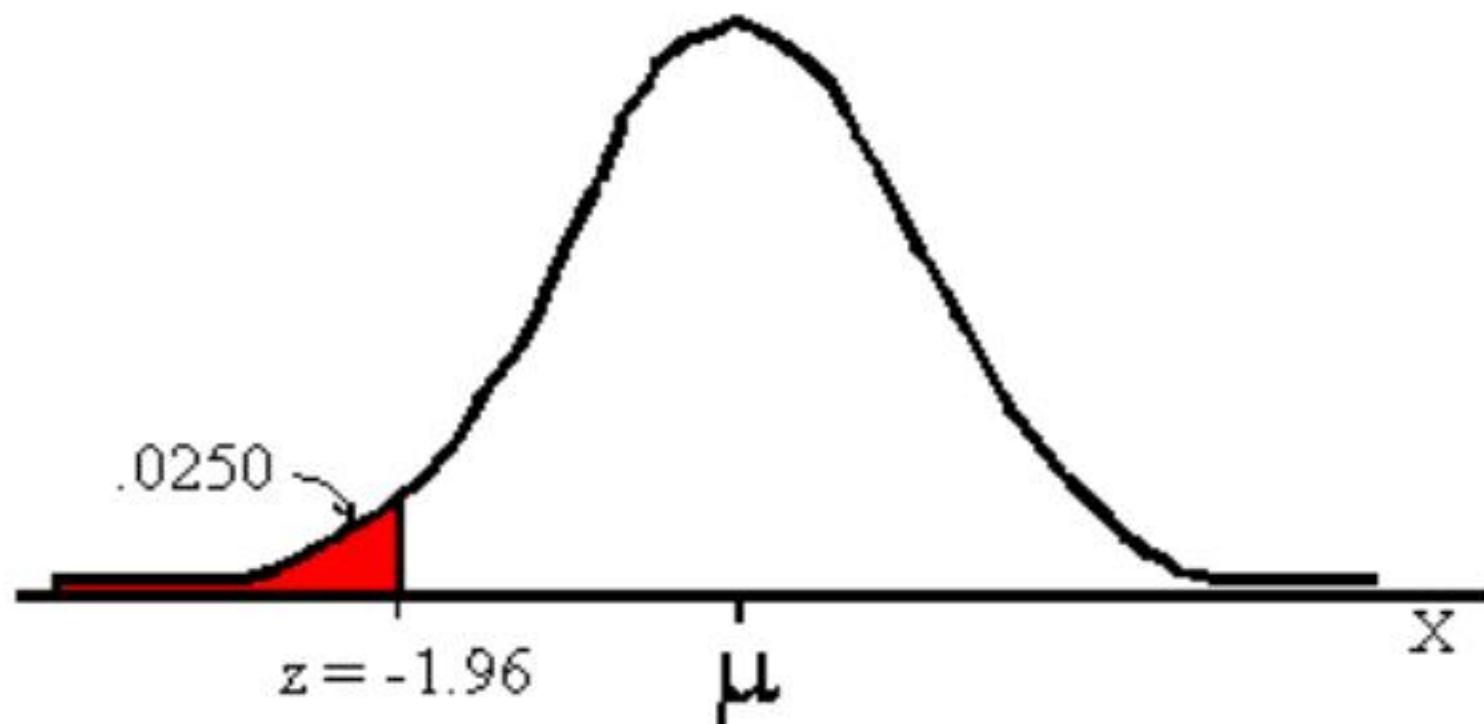

Standard Normal Distribution

Calculating Probabilities

Probability calculations are always concerned with finding the probability that the variable assumes any value in an interval between two specific points a and b .


The probability that a continuous variable assumes the a value between a and b is the area under the graph of the density between a and b .

Finding Probabilities


- (a) What is the probability that $z < -1.96$?
 - (1) Sketch a normal curve
 - (2) Draw a line for $z = -1.96$
 - (3) Find the area in the table
 - (4) The answer is the area to the left of the line $P(z < -1.96) = .0250$

<i>z</i>	-0.09	-0.08	-0.07	-0.06	-0.05	-0.04	-0.03	-0.02	-0.01	0.00	<i>z</i>
-3.80	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	-3.80
-3.70	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	-3.70
-3.60	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0002	-3.60
-3.50	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	-3.50
-3.40	.0002	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	-3.40
-3.30	.0003	.0004	.0004	.0004	.0004	.0004	.0004	.0005	.0005	.0005	-3.30
-3.20	.0005	.0005	.0005	.0006	.0006	.0006	.0006	.0006	.0007	.0007	-3.20
-3.10	.0007	.0007	.0008	.0008	.0008	.0008	.0009	.0009	.0009	.0010	-3.10
-3.00	.0010	.0010	.0011	.0011	.0011	.0012	.0012	.0013	.0013	.0013	-3.00
-2.90	.0014	.0014	.0015	.0015	.0016	.0016	.0017	.0018	.0018	.0019	-2.90
-2.80	.0019	.0020	.0021	.0021	.0022	.0023	.0023	.0024	.0025	.0026	-2.80
-2.70	.0026	.0027	.0028	.0029	.0030	.0031	.0032	.0033	.0034	.0035	-2.70
-2.60	.0036	.0037	.0038	.0039	.0040	.0041	.0043	.0044	.0045	.0047	-2.60
-2.50	.0048	.0049	.0051	.0052	.0054	.0055	.0057	.0059	.0060	.0062	-2.50
-2.40	.0064	.0066	.0068	.0069	.0071	.0073	.0075	.0078	.0080	.0082	-2.40
-2.30	.0084	.0087	.0089	.0091	.0094	.0096	.0099	.0102	.0104	.0107	-2.30
-2.20	.0110	.0113	.0116	.0119	.0122	.0125	.0129	.0132	.0136	.0139	-2.20
-2.10	.0143	.0146	.0150	.0154	.0158	.0162	.0166	.0170	.0174	.0179	-2.10
-2.00	.0183	.0188	.0192	.0197	.0202	.0207	.0212	.0217	.0222	.0228	-2.00
-1.90	.0233	.0239	.0244	.0250	.0256	.0262	.0268	.0274	.0281	.0287	-1.90
-1.80	.0294	.0301	.0307	.0314	.0322	.0329	.0336	.0344	.0351	.0359	-1.80
-1.70	.0367	.0375	.0384	.0392	.0401	.0409	.0418	.0427	.0436	.0446	-1.70
-1.60	.0455	.0465	.0475	.0485	.0495	.0505	.0516	.0526	.0537	.0548	34-1.60

Finding Probabilities

Finding Probabilities

(b) What is the probability that $-1.96 < z < 1.96$?

(1) Sketch a normal curve

(2) Draw lines for lower $z = -1.96$, and

upper $z = 1.96$

(3) Find the area in the table corresponding to each value

(4) The answer is the area between the values.

Subtract lower from upper:

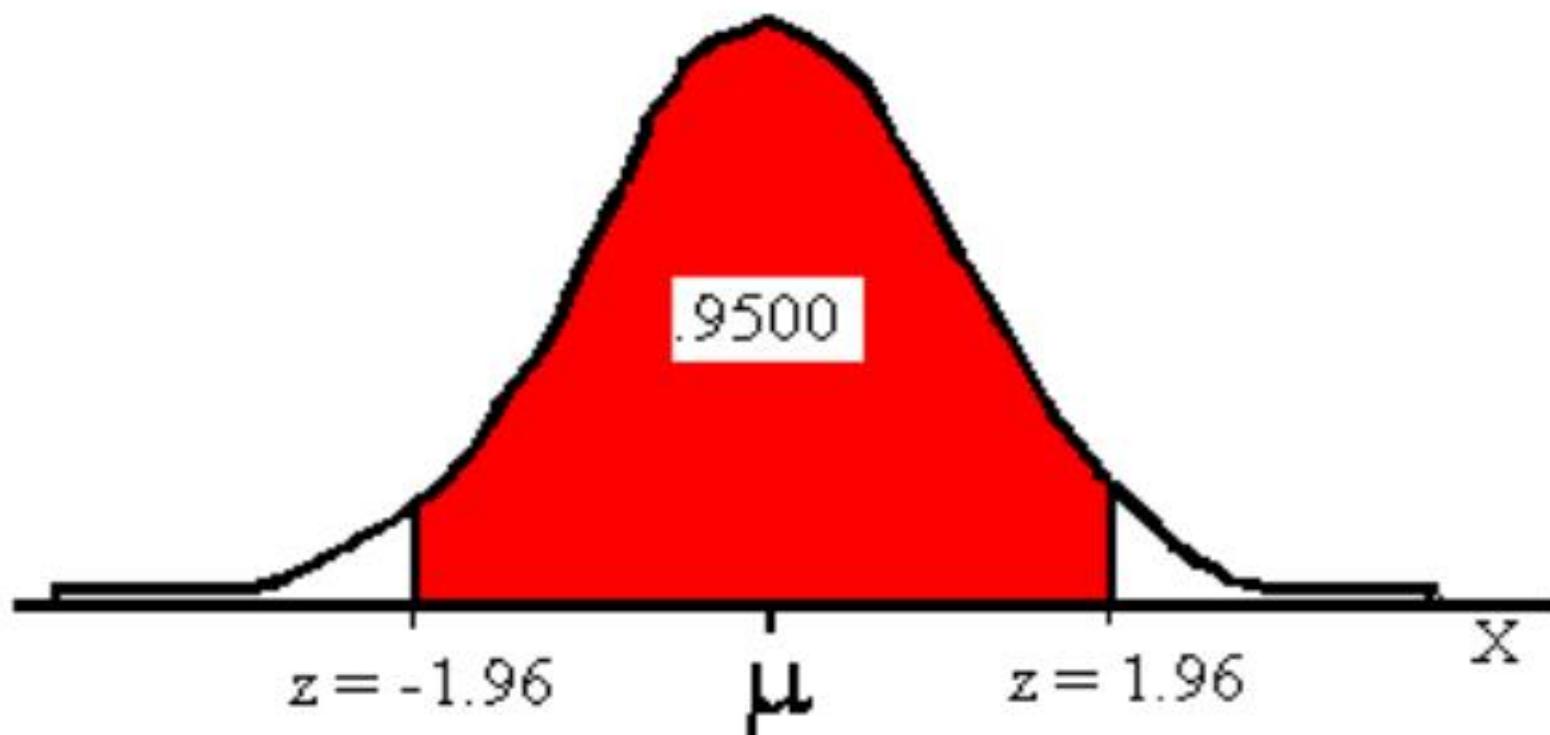
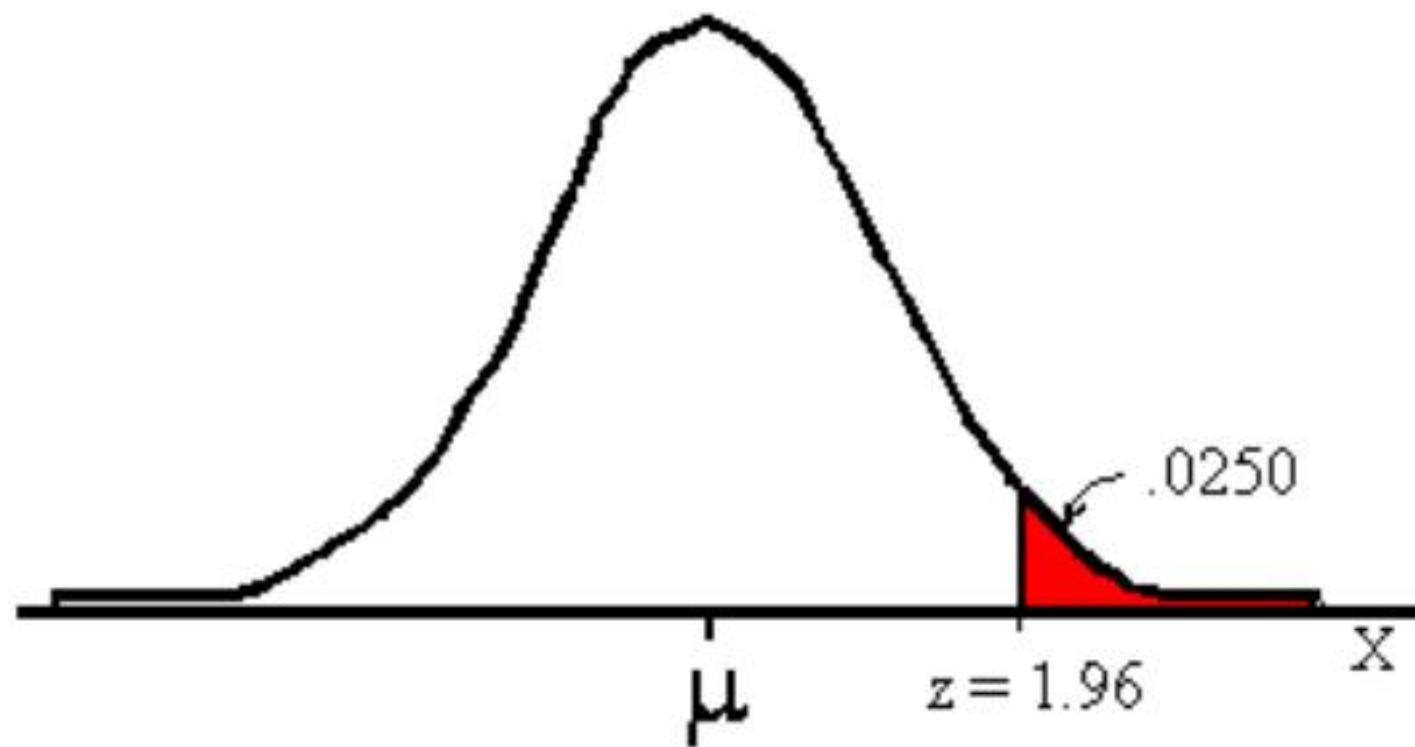

$$P(-1.96 < z < 1.96) = .9750 - .0250 = .9500$$

TABLE D (continued)

<i>z</i>	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	<i>z</i>
0.00	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359	0.00
0.10	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753	0.10
0.20	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141	0.20
0.30	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517	0.30
0.40	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879	0.40
0.50	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224	0.50
0.60	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549	0.60
0.70	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852	0.70
0.80	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133	0.80
0.90	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389	0.90
1.00	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621	1.00
1.10	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830	1.10
1.20	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015	1.20
1.30	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177	1.30
1.40	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319	1.40
1.50	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441	1.50
1.60	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545	1.60
1.70	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633	1.70
1.80	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706	1.80
1.90	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767	1.90
2.00	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817	2.00
2.10	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857	2.10
2.20	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890	2.20
2.30	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916	2.30
2.40	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.99387	2.40

Finding Probabilities

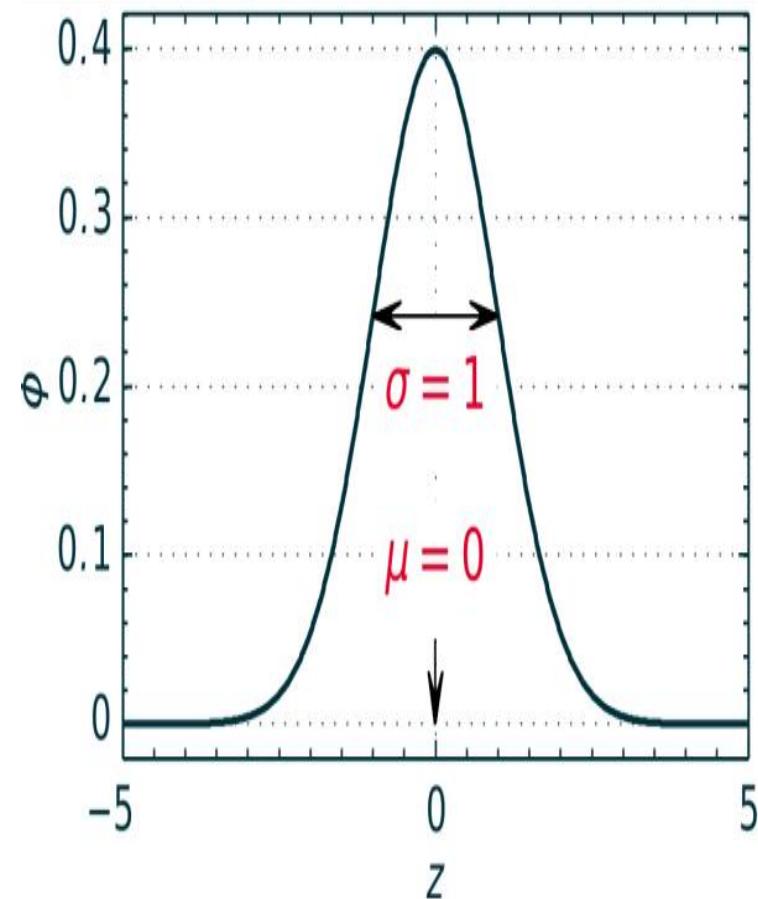
Finding Probabilities


(c) What is the probability that $z > 1.96$?

- (1) Sketch a normal curve
- (2) Draw a line for $z = 1.96$
- (3) Find the area in the table
- (4) The answer is the area to the right of the line. It is found by subtracting the table value from 1.0000:

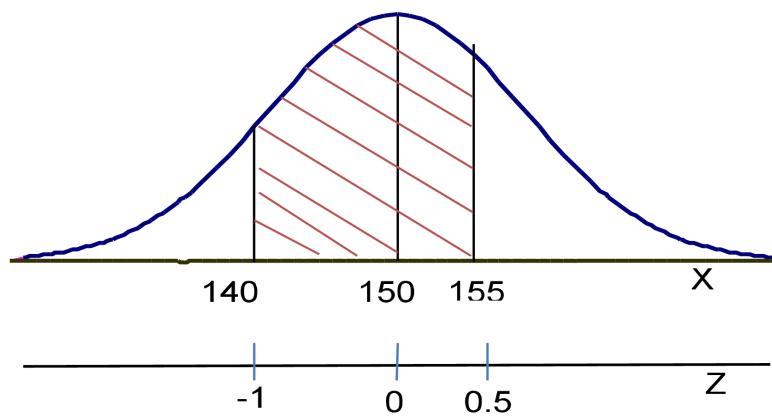
$$P(z > 1.96) = 1.0000 - .9750 = .0250$$

Finding Probabilities



Example: Weight

If the weight of males is N.D. with $\mu=150$ and $\sigma=10$, what is the probability that a randomly selected male will weigh between 140 lbs and 155 lbs?


[Important Note: Always remember that the probability that X is equal to any one particular value is zero, $P(X=value)=0$, since the normal distribution is continuous.]

Example: Weight

Solution:

$$Z = (140 - 150) / 10 = -1.00 \text{ s.d. from mean}$$

$$\text{Area under the curve} = .3413 \text{ (from Z table)}$$

$$Z = (155 - 150) / 10 = +.50 \text{ s.d. from mean}$$

$$\text{Area under the curve} = .1915 \text{ (from Z table)}$$

$$\text{Answer: } .3413 + .1915 = .5328$$

Example: IQ

If IQ is ND with a mean of 100 and a S.D. of 10, what percentage of the population will have

- (a)IQs ranging from 90 to 110?
- (b)IQs ranging from 80 to 120?

Solution:

$$Z = (90 - 100)/10 = -1.00$$

$$Z = (110 - 100)/10 = +1.00$$

Area between 0 and 1.00 in the Z-table is .3413; Area between 0 and -1.00 is also .3413 (Z-distribution is symmetric).

Answer to part (a) is $.3413 + .3413 = .6826$.

Example: IQ

(b) IQs ranging from 80 to 120?

Solution:

$$Z = (80 - 100)/10 = -2.00$$

$$Z = (120 - 100)/10 = +2.00$$

Area between =0 and 2.00 in the Z-table is .4772; Area between 0 and -2.00 is also .4772 (Z-distribution is symmetric).

Answer is .4772 + .4772 = .9544.