بسم الله الرحمان الرحيم (وَفَوْقَ كُلِّ ذِي عِلْمٍ عَلِيمٌ)

Microbiology | Lecture #6

Bacterial Growth & Physiology

Written by : Dopamine 023

Reviewed by: Rayan Theeb

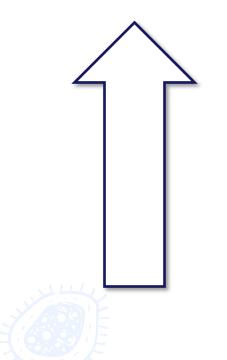
Lecture 3

Bacterial Growth& physiology

Bacterial Growth

Definitions

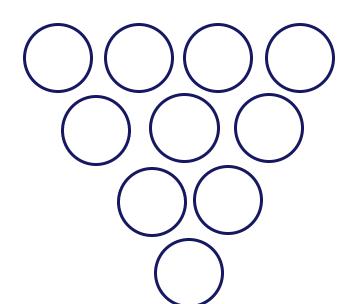
B. Reproduction


culture media

- A) Definition
- B) Classification
- C) Types

Bacterial growth curve

Bacterial Growth: Definition

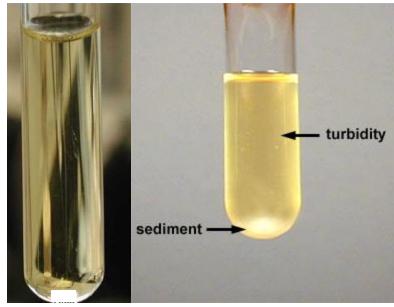


Increase in

Size

&Number of

organism

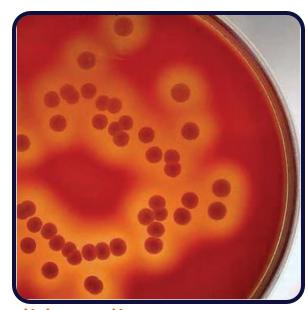


1) Bacterial Growth

We put the sample in a broth (fluid media) then leave it for hours. An increase in Turbidity (cloudiness) indicates bacterial growth.

Indicated by

a) Turbidity of the fluid media



1) Bacterial Growth

Indicated by

b) Colonies on solid media

(Macroscopic product)

We place the sample on a solid medium, where colonies visible to the naked eye (macroscopic) indicate bacterial growth.

2) Colony (Macroscopic product)

Every yellow dot is a colony

Single bacterium

On solid media

After 20-30 division

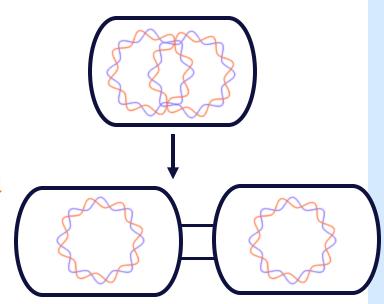
Binary fission

So the appearance of colony will be after

20-30 division of single bacterium

Colony

A colony is a product of a single bacterium after it undergoes 20-30 binary fissions.


2) Colony

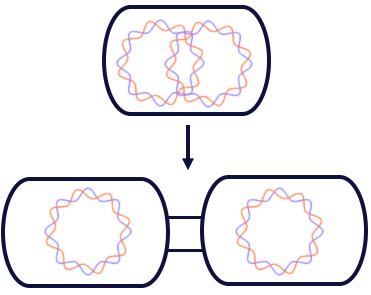
After 20-30 division

Binary fission

1 Million

1million and 24 thousand bacteria result

 (2^{20}) 20 is the number of divisions

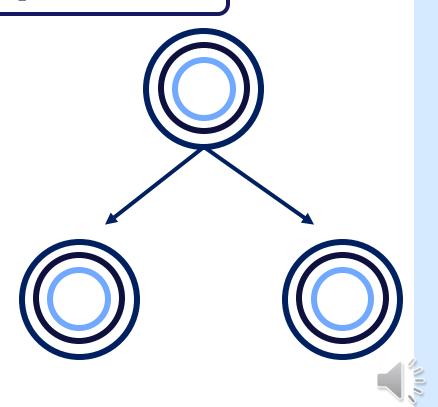

The first division results in 2 daughter cells, hence the base is 2

3) Generation time (doubling time)

Generation time = time it takes the bacteria to undergo division

13min (V.cholerae)

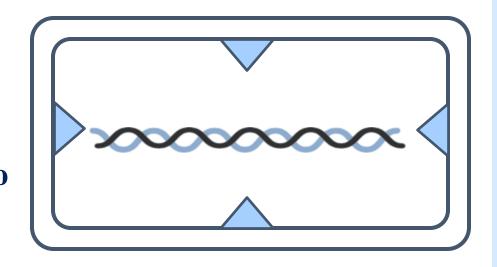
V. cholerae undergoes division every 13 minutes.


24 hrs (*M.tuberculosis*)

M. tuberculosis undergoes division every 24 hours

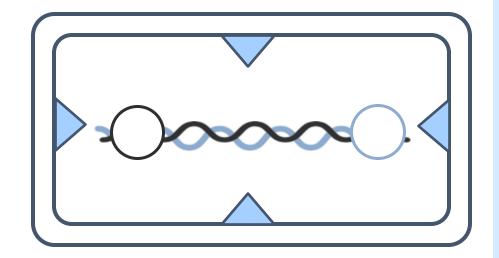
Binary fission

One cell produces 2 identical daughter cells.


daughter cells that are the same size as the parent cell.

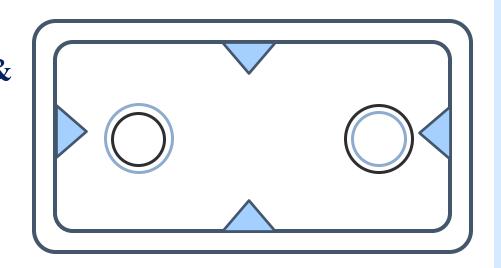
2 Separation of 2 strands
(ssDNA attached to

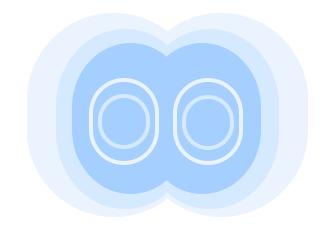
mesosome)


Every single strand will get attached to the mesosome

This occurs because enzymatic activity takes place there, where enzymes have the ability to separate the double-stranded DNA.

Separation of 2 strands


Each strand returns to its original state (circular)


Each strand will act as a template, building a double strand

Formation of division septum

In bacteria, cell division occurs by the ingrowth of the envelope layers [membrane and peptidoglycan (PG) cell wall] to form a septum that. The septal PG is later hydrolyzed, and the daughter cells separate. [1]

Cell separation

Finally, the cell separates, producing 2 daughter identical cells

Bacterial culture media

Bacteria grow

(In vitro)

In vitro means "in glass," referring to an artificial setting in which nutrients are provided.

Need nutrients for growth

Artificial

Of culture media

Is to ultimately determine whether the patient suffers from a bacterial infection or not.

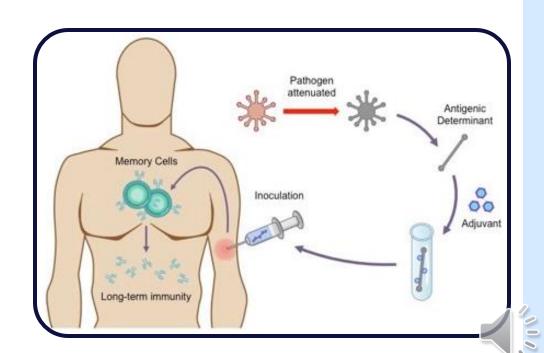
Study Properties

Of the bacteria

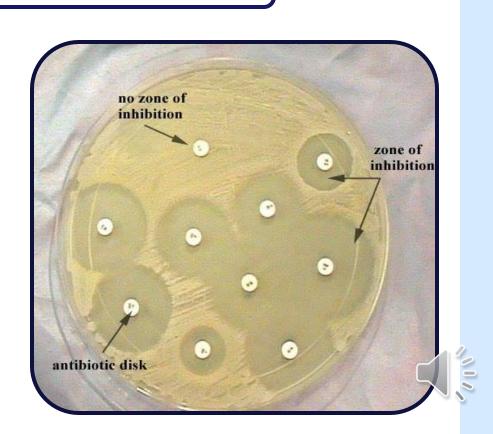
2

Isolation & diagnosis

(Causative agent)



Determining the type of bacteria which caused the infection


Prepare vaccine & Other product

Streptokinase is extracted and purified from *S. pyogenes* and used as an anticoagulant.

4

For Selection proper antibiotics

Classification of media

Liquid

We put the media in a tube if it's liquid and call it broth

Solid or semi-solid

Is put in a petri dish

Types of media

- 1) Simple media
- 2) Enriched media
- 3) Selective media
- 4) Differential media

Basic requirement for growth of most bacteria

A) Peptone water

Peptone + 0.5% NaCl

Enhancement Supports the growth

Sugar media

B) Nutrient broth

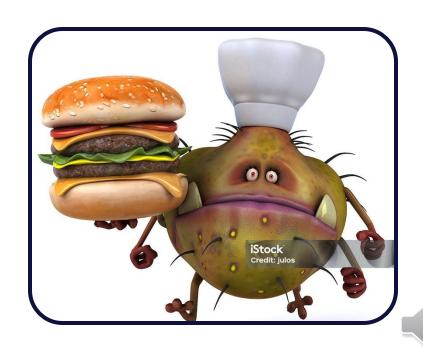
Meat extract

Enhancement Supports the growth

C) Nutrient agar plate

Nutrient broth + 2% agar agar (Seaweed)

Seaweed can be synthesized artificially


Boiled together and left at room temperature till solidification (semi-solid)

Suitable for Staph. aureus

Fastidious bacteria Need blood, serum for growth

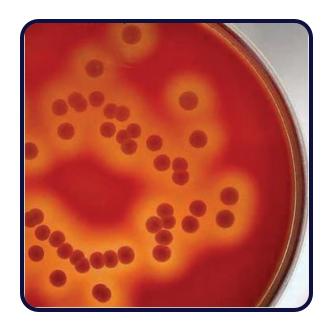
Fastidious bacteria require more than just proteins; they require other nutrients, such as blood and serum.

A) Blood agar

Nutrient agar heated at 45°C (semisolid)

+ sheep blood

Sheep blood doesn't contain antibodies that can affect the result

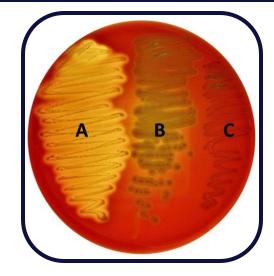


A) Blood agar

Streptococci

Strept. pyogenes

Streptococci mainly grows on this medium, some can exhibit hemolytic activity.



Hemolysis on blood agar:

- A. Complete (beta) hemolysis:
 - Staphylococcus aureus
 - Streptococcus pyogenes Complete and clear

- C. No (gamma) hemolysis:
 - Enterococci.

- B. Partial (alpha) hemolysis:
 - Streptococcus viridans
 - pneumococci.
 Partial and greenish

B) Chocolate agar

Nutrient agar heated at 100 °C, add blood

Hb Heat Haematin

(Chocolate)

Hemoglobin breaks down under heat, turning to haematin, which is brownish or chocolate colored.

B) Chocolate agar

Haemophilus

Neisseria

Both are fastidious bacteria grown on chocolate agar

Selective media

Allow a certain organism to grow

(Selective) &

inhibits the growth of others

Can support certain organisms and inhibit others, hence the name.

Selective media

Lowenstein Jensen medium

Malachite green The selective material

Mycobacterium tuberculosis

Isthe bacteria grown Inthis medium

Selective media

Blood tellurite agar

Potassium tellurite

The selective material

C.diphtheriae

The bacteria grown Inthis medium

Differential media

Selective

+

Indicator

The only difference between selective and differential medias

Allow a certain organism to grow

Indicator to differentiate (change in visibly)

Purpose

MacConkey's agar Used to differentiate between bacteria that can

Bile (Enterobacteria)

Pile is selective for enterobacteria Lactose test sugar

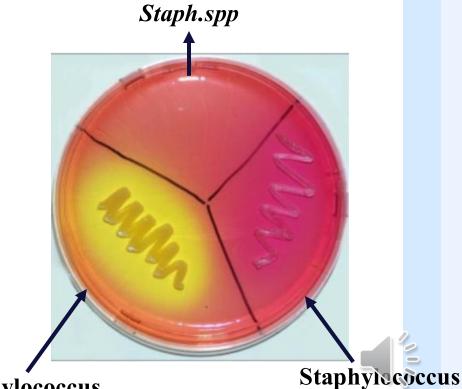
Peptone Peptone: Nitrogen source, also works as a carbon source for bacteria that can not metabolize sugars. [2]

Neutral red =pH indicator

If the organism can ferment lactose >> Pink because fermentation of lactose produces acid

Pink

Pale


If not >> pale "yellowish"

Differential media

Mannitol salt agar

(high salt 7.5% NaCl)

Phenol red =pH indicator

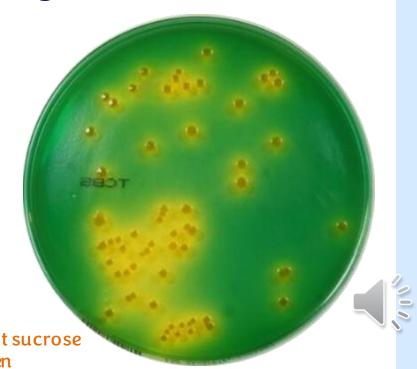
Staphylococcus

epidermidis

Differential media

Thiosulfate-Citrate-Bile-Sucrose Agar. (TCBS)

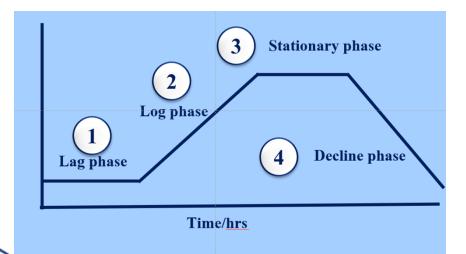
Thiosulphate


Bile

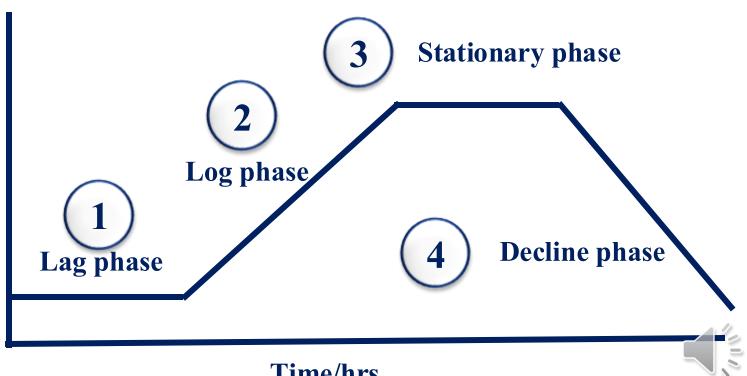
Citrate

Sucrose as test sugar

Bromothymol blue Indicator


Vibrio cholera appears yellow, because it can ferment sucrose Vibrio parhaemolyticus can't ferment sucrose » green

- 1) Lag phase
- 2) Log phase
- 3) Stationary phase
- 4) Decline phase


If a small number of bacteria are inoculated into a liquid nutrient medium

They experience 4 phases

72h

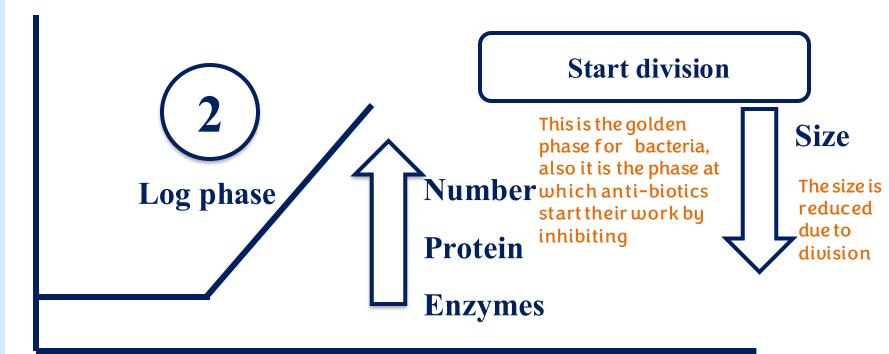
Time/hrs

Lag phase

No. of bacteria

Lag phase

No. constant


Since the bacteria still adapt and synthesize the needed enzymes and proteins.
Size increases because bacteria feed on availabe nutrients

Log phase

Golden phase

No. of bacteria

Time/hrs

Stationary phase

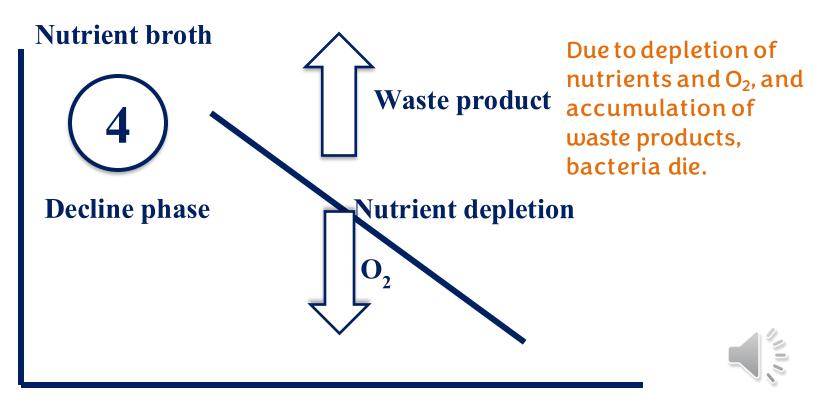
No. of bacteria

Stationary phase

At this stage nutrients start to deplete, and waste products start to accumulate.

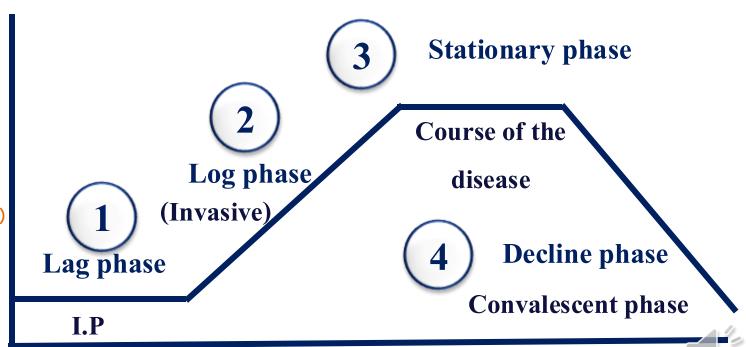
Constant number

No. of division = No. of


death

(Waste product)

Time/hrs


Decline phase

Time/hrs

The analogues for these phases in human body are:

- 1. incubation period
- 2. Invasive period (where symptoms start to appear)
- 3.Course of the disease
- 4.Convalscent phase (curing)

Time/hrs

Bacterial growth requirements

Growth Requirements

- A) Nutrition
- B) Gaseous
- C) Temp. & pH

A) Nutrition

Maintenance of bacterial growth

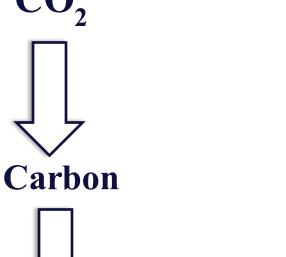
A) Nutrition

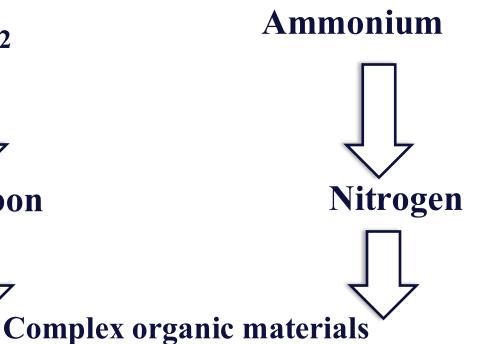
1- Autotrophic

auto = self

Trophic=nutrition

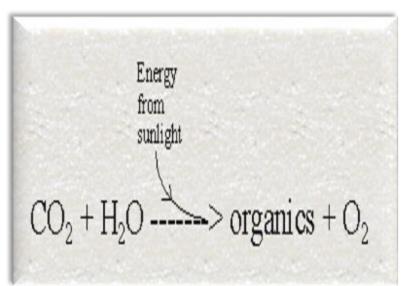
2- Heterotrophic


hetero = different


Trophic = nutrition

Autotrophic

Utilize simple inorganic substance Carry out anabolism



(Saprophytic)

Autotrophic

No medical importance

Since they are independent of other organisms in means of nutrition, they are not invasive, thus having no medical significance.

Heterotrophic

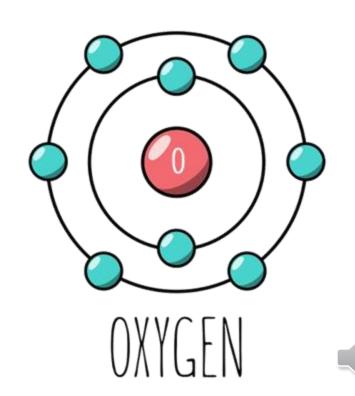
These bacteria require complex preformed organic substances e.g. sugars, proteins etc.

They can't utilize inorganic substances
Since they are dependent on other organisms in means of nutrition, they are invasive, thus having a medical significance.

Living host

Medical important

Growth Requirements


Gaseous requirements

O₂ requirement, bacteria are classified into 5 groups

O2 requirement

- 1) Obligate aerobes
- 2) Obligate anaerobes
- 3) Facultative anaerobes
- 4) Micro-aerophilic
- 5) Aero-tolerant

Respiration

Glucose catabolism

Energy production

Bacterial respiration is the **catabolism** of, mainly, glucose for energy production and it could be in absence or presence of O₂

Aerobic respiration

 (O_2)

Anaerobic respiration

 $(No O_2)$

1- Obligate aerobes (Aerobic respiration)

Presence of O₂

Absence of O₂

Growth

No growth

e.g. Pseudomonas aeruginosa

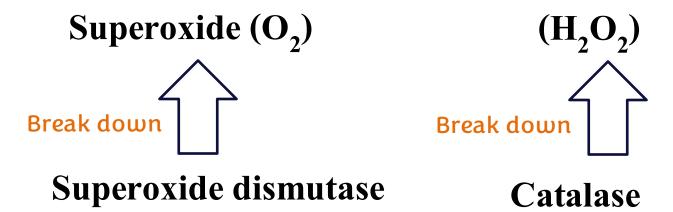
1- Obligate aerobes (Aerobic respiration)

Aerobic respiration

For production Energy (ATP)

Glucose catabolism (glycolysis)

1- Obligate aerobes (Aerobic respiration)


2 pyruvate
$$\frac{\text{Kreb's}}{\text{Cycle}}$$
 2FADH₂ +8NADH + 2 ATP

$$O_2 \longrightarrow Carry 2H^+ \longrightarrow H_2O + 34 ATP$$

1- Obligate aerobes

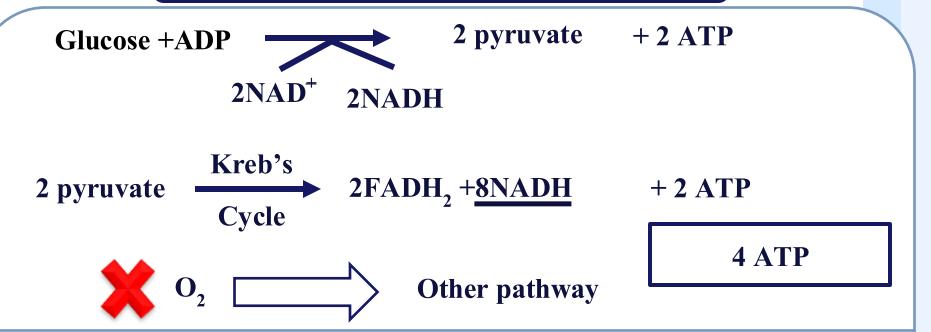
A problem will appear in obligate aerobes which is the production of highly toxic molecules

Highly toxic molecules

2- Obligate anaerobes

Presence of O2

Absence of O2


No growth

Growth

Bacteroides fragilis

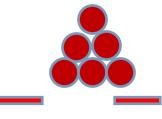
2- Obligate anaerobes(Anaerobic respiration)

Lack Superoxide dismutase & Catalase

So even if these bacteria used O2 as an

electron acceptor, toxic molecules would accumulate and cause their death

2- Obligate anaerobes(Anaerobic respiration)

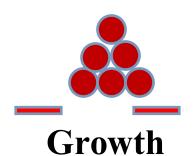

Catalase

The organism used inorganic molecules From Kreb's cycle Obligate From the ETC and glycolysis **Nitrate** 13 ATP + 4 ATPCarry H⁺ **Sulfate 17 ATP** Co₂ Lack Superoxide dismutase

Anaerobe

3- Facultative anaerobes

Presence of O₂

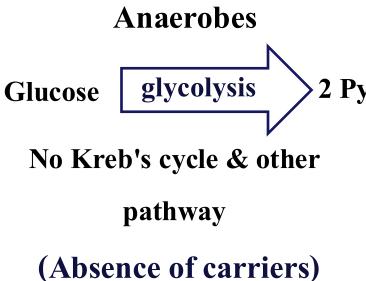


Growth

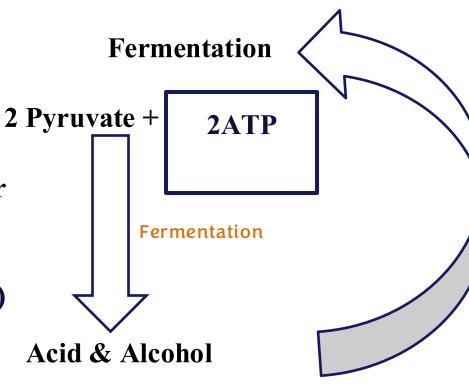
Rate of growth

Most bacteria

Absence of O₂

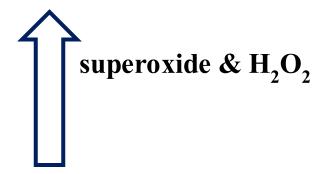


Originally, they live in the presence of O_2 exhibiting regular respiration, but they have adapted to live (less efficiently) in low O_2 levels or in its absence by using fermentation as a catabolic pathway.

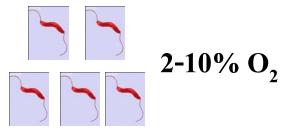


3- Facultative anaerobes

Absence of O2 case


Can't go through other pathways such as using nitrate or sulfate because they aren't adapted to using them

4- Micro-aerophilic


Presence of O₂

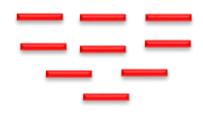
No growth

These bacteria can't live in normal levels of O₂ due to their decreased enzymatic activity of superoxide dismutase and catalase.

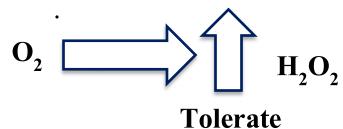
Low O₂

Growth

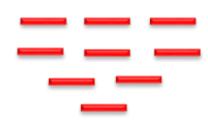
Low superoxide


dismutase & catalase

Campylobacter


Helicobacter

5- Aero-tolerant anaerobes



Superoxide dismutase

Cl.perfringens

Absence of O2

Growth

Originally, they live in the absence of O₂ exhibiting respiration by using other inorganic molecules, but they have adapted (tolerate) to live at low O₂ for minutes before accumulation of toxic molecules due to their decreased enzymatic activity.

Growth Requirement: CO2 requirements

 CO_2 (0.03%)

Present in air

is sufficient

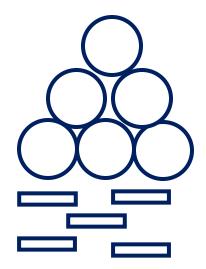
For most of bacteria

 CO_2 (5-10%)

(Capnophilic)

Neisseria

Brucella



Growth Requirement: Hydrogen ion (pH)

pH (7.2 -7.4)

(Most bacteria)

And they are called Neutrophiles

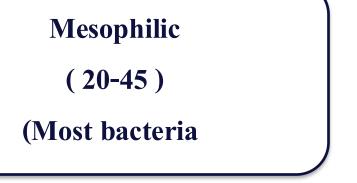
Hydrogen ion (pH)

Alkaline (pH 9)

Vibrio cholerae Alkalophiles such as this prefer high pH levels.

Acidic (pH 4)

Lactobacilli


Acidophils such as this prefer low pH levels.

Growth Requirement: Temperature

Thermophilic

(55-65)

Psychrophilic (0-15)

رسالة من الفريق العلمي:

For any feedback, scan the code or click on

Corrections from previous versions:

Versions	Slide # and Place of Error	Before Correction	After Correction
V0 → V1			
V1 → V2			