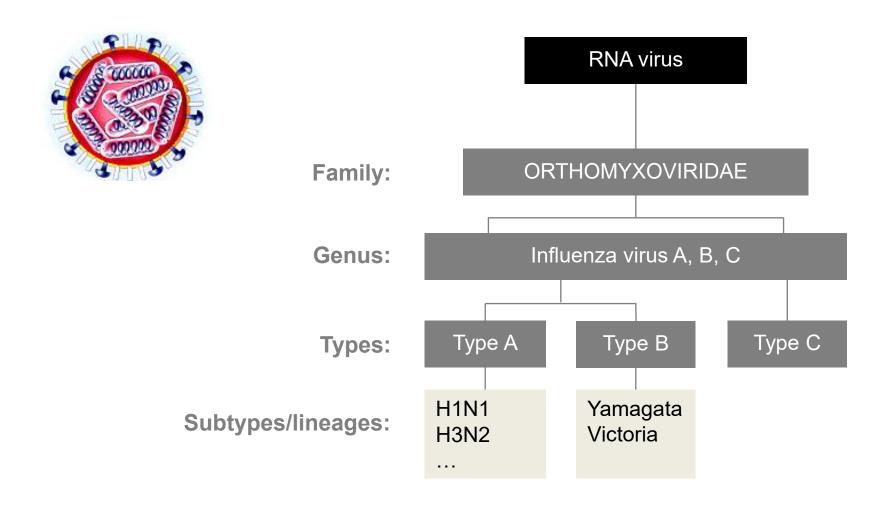


Infectious Disease Epidemiology: Influenza and Strep. Pneumona epidemiology and prevention

Dr Munir Abu-Helalah Associate Professor of Epidemiology and Preventive Medicine

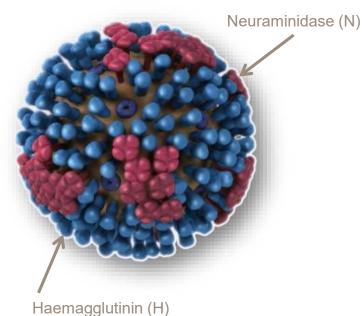
Influenza Virus


Influenza uptake in Jordan based on all amount of seasonal vaccine delivery to Jordan: 1.5%-2.5%

In the USA: 40-50% of the total population receives vaccine annually. Public Health experts consider this figure:

"Unmet Need!"

What do we miss in Jordan in term of flu vaccines selection and utilization??


Influenza virus classification^{1,2}

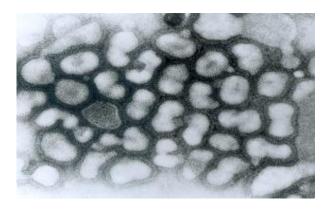
Influenza as a cause of disease

- Type A influenza virus
 - Affects both humans and animals
 - Divided into subtypes, based on two surface proteins: haemagglutinin and neuraminidase
 - Main circulating strains are H1N1 and H3N2
- **Type B** influenza virus
 - Affects predominantly humans
 - Not divided into subtypes, but split into two lineages: Victoria and Yamagata
- **Type C** influenza virus
 - Rarely reported in humans, and most cases subclinical

Influenza A virion showing the two major surface glycoproteins

CDC, Centers for Disease Control and Prevention ie pink book; influenza, 2012 (accessed April 2014); Nelson MI, Holmes EC, Nat Rev Genet 2007;8:196–205

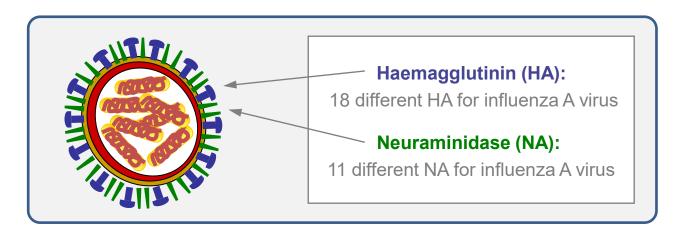
Overview: influenza


- Influenza is an acute viral infection of the respiratory tract
- There are three types of influenza virus: A, B and C
- Influenza A and influenza B are responsible for most clinical illness

Emergency hospital during the flu pandemic in 1918

Source: US National Museum of Health and Medicine, Armed Forces Institute of Pathology, Washington DC, USA (NCP1603)

Electron micrograph of cells infected with influenza A virions


Source: US CDC

WHO, World Health Organization
WHO. Influenza (seasonal) 2009. Fact sheet No. 211 (accessed April 2014); US CDC. The pink book: influenza. 2012 (accessed April 2014).

Constant and rapid genetic evolution of influenza¹

Surface antigens of influenza viruses change:

- Antigenic drift:
 - Minor changes associated with annual outbreaks or epidemics
 - Impact : updating vaccine yearly to match predicted strains that will be circulating
- Antigenic **shift**:
 - Major changes resulting in new subtype with a new HA protein (and sometimes NA)
 - Can lead to pandemics

Antigenic shift

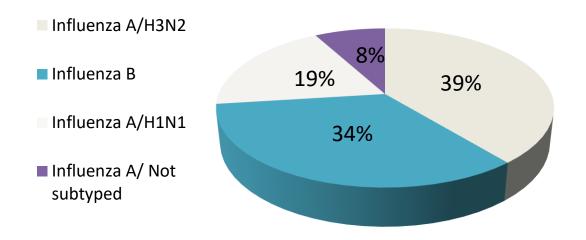
- is the process by which two or more different strains of a <u>virus</u>, or strains of two or more different viruses, combine to form a new subtype having a mixture of the surface <u>antigens</u> of the two or more original strains.
- The term is often applied specifically to <u>influenza</u>, as that is the best-known example, but the process is also known to occur with other viruses, such as <u>visna virus</u> in sheep.
- Antigenic shift is a specific case of <u>reassortment</u> or viral shift that confers a <u>phenotypic</u> change.
- Antigenic shift, however, occurs only in influenza A because it infects more than just humans.
- The most recent 2009 H1N1 outbreak was a result of antigenic shift and reassortment between human, avian, and swine viruses

^{1.} Narayan, O; Griffin, DE; Chase, J (1977). "Antigenic shift of visna virus in persistently infected sheep". Science. 197 (4301): 376–378. doi:10.1126/science.195339. PMID 195339.)

^{2.^} Jump up to: ^a Treanor, John (15 January 2004). "Influenza vaccine--outmaneuvering antigenic shift and drift". New England Journal of Medicine. 350 (3): 218–220. doi:10.1056/NEJMp038238. PMID 14724300.

Antigenic drift

- Antigenic shift is contrasted with <u>antigenic drift</u>, which is the natural <u>mutation</u> over time of known strains of influenza (or other things, in a more general sense) which may lead to a loss of immunity, or in vaccine mismatch.
- Antigenic drift occurs in all types of influenza including <u>influenza</u>
 <u>A, influenza B</u> and <u>influenza C</u>.
- Affected species include other <u>mammals</u> and <u>birds</u>, giving influenza A
 the opportunity for a major reorganization of surface antigens.
- Antigenic drift has been responsible for heavier-than-normal <u>flu seasons</u> in the past, like the outbreak of <u>influenza H3N2</u> variant A/Fujian/411/2002 in the 2003–2004 flu season.
- All influenza viruses experience some form of antigenic drift, but it is most pronounced in the influenza A virus.

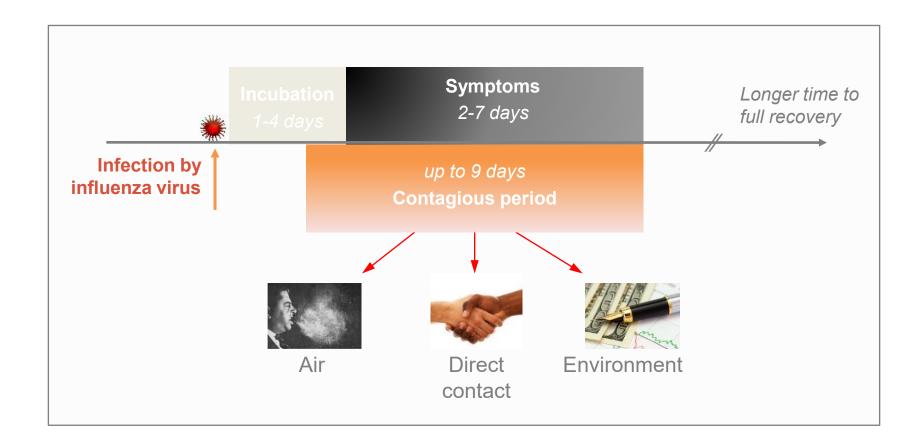

^{1.} Narayan, O; Griffin, DE; Chase, J (1977). "Antigenic shift of visna virus in persistently infected sheep". <u>Science</u>. **197** (4301): 376–378. <u>doi:10.1126/science.195339</u>. <u>PMID</u> 195339.)

^{2.^ &}lt;u>Jump up to:a b Treanor, John (15 January 2004).</u> "Influenza vaccine--outmaneuvering antigenic shift and drift". <u>New England Journal of Medicine</u>. **350** (3): 218–220. <u>doi:10.1056/NEJMp038238</u>. <u>PMID 14724300</u>.

Vaccines Evidence Based Approach Summit

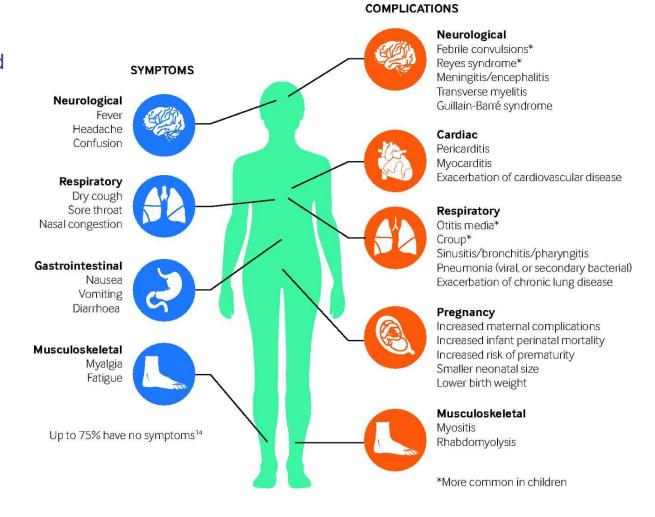
Influenza is caused by A and B virus strains worldwide

Influenza causes by virus type



- Global Influenza Surveillance and Response System (GISRS):
 - Analysis of laboratory-confirmed influenza surveillance data by type and subtype (A/H3N2, A/H1N1 and B) from July 2016 to August 2016
 - These latest data were collected from NICs and other national influenzal laboratories in 50 countries, areas or territories

Compiled laboratory confirmed data from the Global Influenza Surveillance and Response System (GISRS) by WHO
FluNet summary 2016. Available from: http://www.who.int/influenza/gisrs_laboratory/updates/summaryreport/en/
Vaccines Evidence Based Approach Summit


[Accessed Ja0uary 2017

Influenza is a highly transmissible viral disease

Symptoms and complications of Influenza

- Influenza is characterized by sudden onset of fever, myalgia, headache, malaise, dry cough, sore throat, and nasal congestion Gastrointestinal symptoms including nausea, vomiting and diarrhea are also common.
- Influenza can cause severe illness or death, particularly in high risk populations

Clinical symptoms and complications of influenza

The symptoms¹ of influenza are similar for influenza A and B²

Sudden onset of fever. extreme fatigue

Nasal congestion

Non-productive cough, Headache sore throat

Myalgia, especially of back muscles

Gastrointestinal: abdominal pain, diarrhoea and vomiting

Compared with otherwise healthy adults, influenza can cause more serious illness and greater mortality in following risk groups³:

Children aged <2 years

Older adults aged ≥65 years

Pregnant women

Individuals with weakened immune systems

blood or metabolic diseases

13

CDC, Centers for Disease Control and Prevention; WHO, World Health Organization 1. US CDC. The Pink Book: influenza. 2012 (accessed April 2014); 2. Hite LK et al. Int J Infect Dis 2007;11:40-7; 3. WHO. Influenza (seasonal) 2009. Fact sheet No. 211. Available at: http://www.who.int/mediacentre/Fact sheets/ (accessed March 2014).

Influenza B clinically similar to A except for age distribution¹

Age

- All age groups can be infected but 5–14/19 yo olds more susceptible to type B virus²⁻³⁻⁴⁻¹⁰
- Influenza B outbreaks can be observed in nursing homes⁵
- During severe influenza B season, influenza B may represent more than 50% of fatal cases in adults > 60 yo⁹

Symptoms

- Clinical symptoms and outcomes similar for A and B infections^{1–2}
- Minimal and inconsistent differences across age groups²
- Very few differences in clinical presentation of influenza B lineages²
- Knowledge gaps still exist⁷

Hospitalizations

- No difference in frequency of hospital admission between influenza A and B
- Influenza B ranks between A/H3N2 and A/H1N1 in frequency, hospitalization rates, morbidity and mortality⁷
- Similar rate of confirmed pneumonia in patients with influenza A and B¹

Deaths

- Substantial impact on mortality:
 - 25% of all influenza related mortality in the US (1976–1999) attributed to influenza B⁶
 - 22% to 44% of pediatric deaths in the US (2004-2011) attributed to influenza B⁶
 - Mortality associated with influenza B was greater than that of influenza A in children <16 yo 8

[•] References: 1. Irving SA, et al. Influenza Other Respir Viruses 2012; 6(1):37. 2. Mosnier A, et al BMC Infect Dis 2015; 15:357. 3. Caini S, et al Influenza Other Respir Viruses 2015; 9(Suppl 1):3. 4. Heikkinen T, et al Clin Infect Dis 2014; 59(11):1519. 5. Camilloni B, et al Vaccine 2010; 28(47):7536. 6. Glezen PW, et al. Am J Public Health 2013; 103(3):e43. 7. van de Sandt CE, et al. Future Microbiol 2015; 10(9):1447. 8. Tran D, et al. Pediatrics 2016; 138(3):e20154643. 9. Adhoch, et al. Eurosurveillance 2018; 23(13) Accessed date June 12 2018 10.Caini, et al. Influenza Other Respir Viruses. 2018

Influenza vaccination and antimicrobial resistance (AMR)

Concomitant NCDs increase the risk of complications of influenza

For individuals with influenza:

- COPD, chronic obstructive pulmonary disease; NCD, noncommunicable disease
- *Prevalence ratio for diabetes 3.10 (95% CI: 2.04–4.71) in 239 patients hospitalised with influenza A

[†]Case fatality rate of influenza in patients with COPD ≥30% compared with 0.05–0.01% in otherwise healthy individuals

WHO recommendations for influenza vaccination

WHO Recommends¹

People at high risk of complications:

Pregnant women (highest priority)

- Children aged 6 months to 5 years:
 - Children aged 6–23 months of age
 - Children aged 2–5 years of age

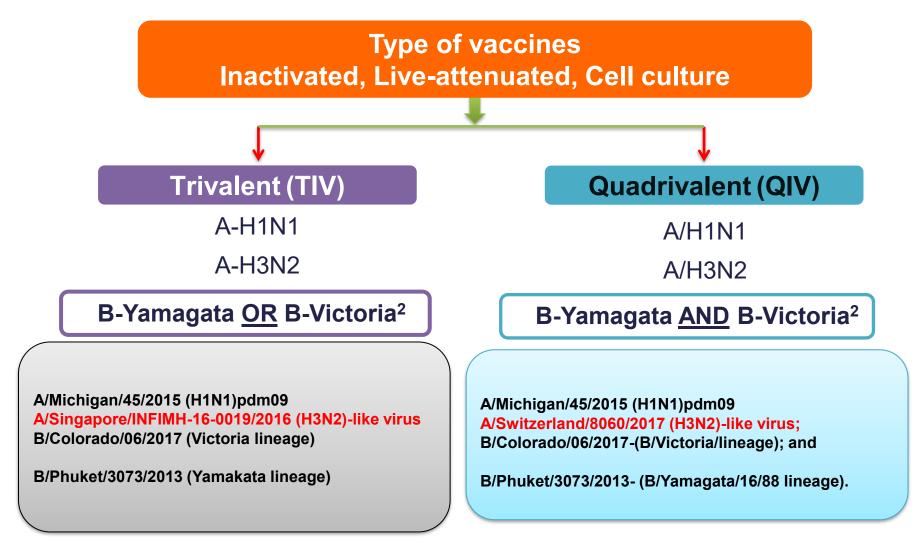
Elderly people (≥65 years of age)

 People with underlying health conditions (diabetes, asthma, chronic heart or lung diseases, HIV/AIDS)

International travelers with any of the above

People at high risk of exposure and/or capable of transmitting influenza to those at high risk of influenza related complications:

Healthcare workers



Pregnant women are recommended by WHO for influenza vaccination

- Pregnant women have an increased risk of severe disease and death from influenza^{1,2}
- The infection may also lead to complications for the fetus/newborn such as stillbirth, neonatal death, preterm delivery, and decreased birth weight^{2,3}
- Furthermore, infants <6 months of age are also at high risk of influenza, but are too young to be vaccinated³

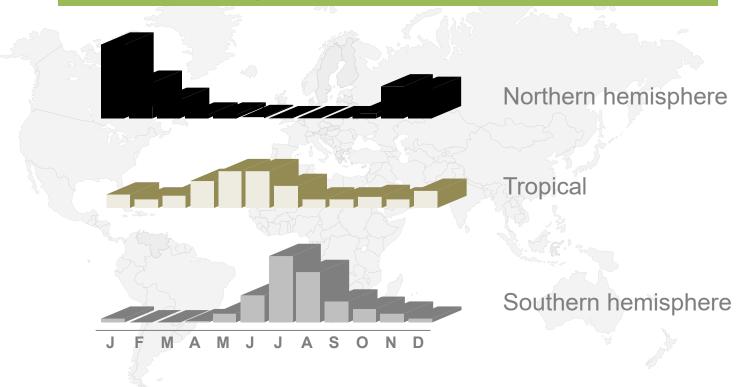
Types of seasonal influenza vaccine

recommended for northern hemisphere composition since 1989

World Health Organization

2013-14

WHO recommended quadrivalent vaccine compositon³


1989

2019

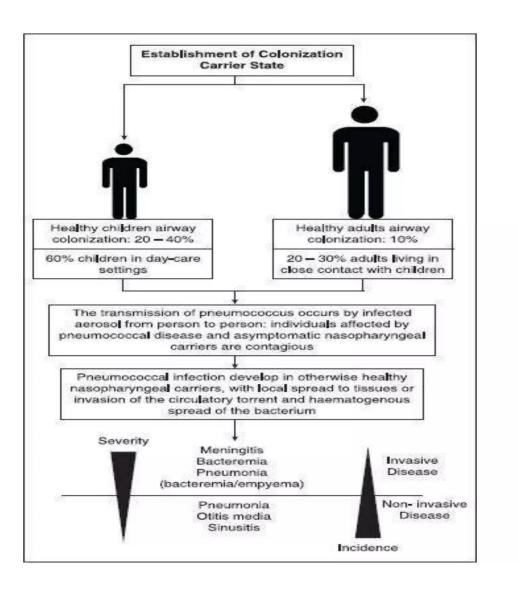
- 9 changes for H1N1
- 20 changes for H3N2
- 14 changes for B

Influenza seasonality

Influenza activity and occurrence in different climates¹

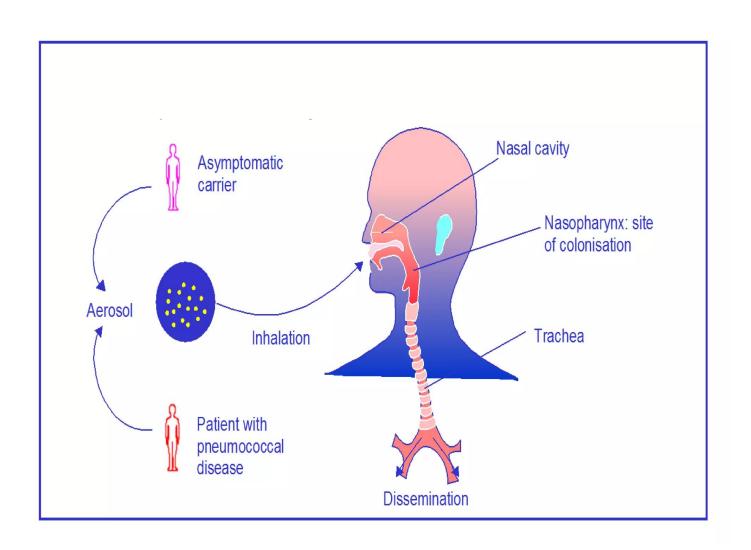
Temperate climates: yearly winter epidemics

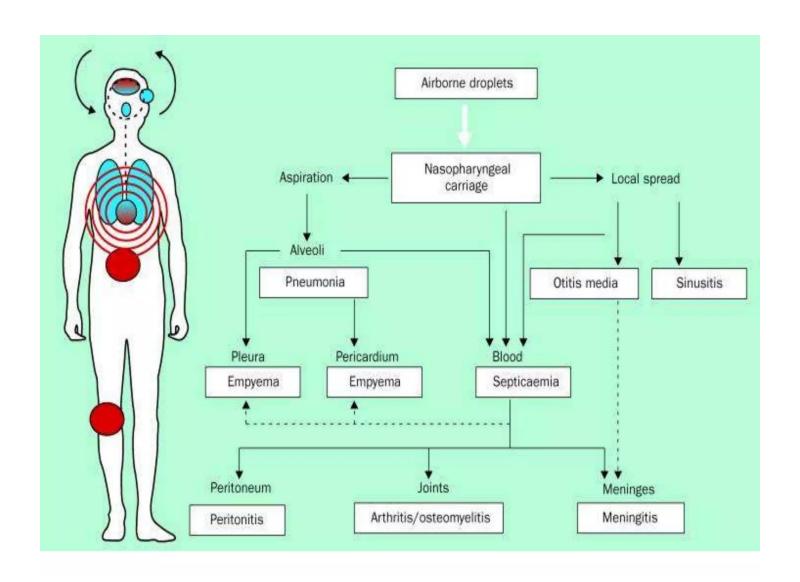
Tropical climates: year-round transmission with several peaks


Global burden of pneumococcal diseases

- Major cause of mortality and morbidity worldwide
- The most common cause of community acquired pneumonia requiring hospitalization, accounting for up to 50% of these cases
- CDC data: most common pediatrics infection for which antibiotics are routinely prescribed.

Pneumococcal diseases burden


- Pneumococcal disease describes a group of infections such as meningitis, pneumonia, septicemia, sinus infections and ear infections caused by the Streptococcus pneumonia.
- Acute respiratory infections kill an estimated 2.6million children under five years of age annually.
- Strep. Pneumonia causes over 1 million of these deaths, most of which occur in developing countries


- Pneumococci are common inhabitants of the respiratory tract and may be isolated from the nasopharynx of asymptomatic human carriers, There is no animal or insect vector.
- Many people, especially children, have the pneumococci in their nostrils, pharynx, or throats without manifesting signs or symptoms of ill health or developing invasive disease, this is called asymptomatic carriage.

Pneumococcal colonisation

- Pneumococcal disease may take place when two situations coincide:
- 1. The host is colonized with a pneumococcal strain against which immunity has not yet been established.
- 2. An alteration of the natural barriers or host immune system has occurred.

Table 1 - Diseases caused by pneumococcus

Non-invasive diseases	Invasive diseases*			
Acute otitis media	Bacteremia			
Sinusitis	Bacteremic pneumonia / empyema			
Conjunctivitis	Meningitis			
Bronchitis	Sepsis			
Pneumonia	Peritonitis			
	Arthritis / osteomyelitis			

^{*} Invasive diseases: isolation of pneumococcus from usually sterile sites (blood, cephalorachidian, pleural or sinovial liquid).

Non-invasive disease

- Acute otitis media and pneumonia (without bacteraemia) are classified as non-invasive disease for surveillance purposes.
- Pneumococcal pneumonia is the most common clinical presentation of pneumococcal disease among adults.
- Pneumococcus is estimated to account for over a third of all community-acquired pneumonia in adults.

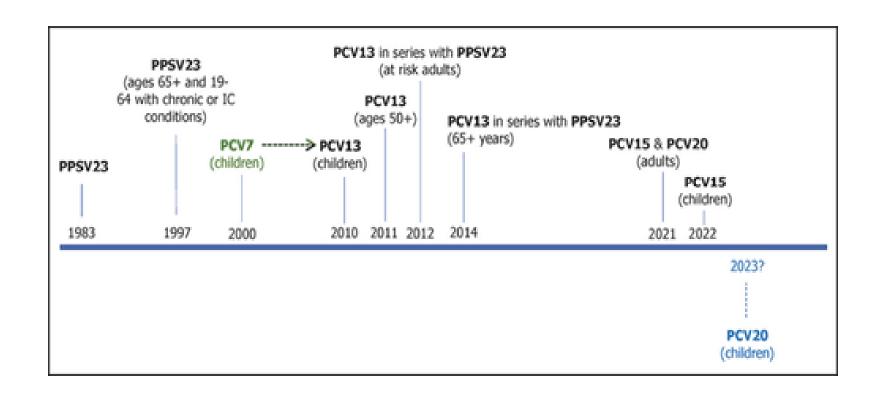
Conditions That Increase Risk for Invasive Pneumococcal Disease

Risk group	Disease or condition				
Immunocompetent children	Chronic pulmonary disease: severe asthma, bronchopulmonary dysplasia, cystic fibrosis, α1-antitrypsin deficiency, bronchiectasis				
	Chronic heart disease, especially congenital cyanotic heart disease or conditions that can lead to heart failure or hemodynamic alterations				
	Down syndrome ¹				
	Diabetes mellitus				
	Chronic liver disease				
	Subarachnoid space fistulas				
	Children with cochlear implants				
Children with asplenia ²	Sickle-cell anaemia and other hemoglobinopathies				
(anatomic or functional)	Congenital or acquired asplenia, or splenic dysfunction				
Immunocompromised children ²	HIV infection				
	Primary immunodeficiencies (excluding isolated IgA deficiency)				
	Chronic kidney failure and nephritic syndrome				
	Diseases that require treatment with immunosuppressive drugs or radiotherapy (including leukaemia, lymphoma, bone marrow or solid organ transplant)				

ACIP risk groups for pneumococcal infection

- (ACIP) recommends vaccination of:
 - All adults aged 65 years and over
 - Adults aged 19-64 years with the following underlying medical conditions:

1- Immunocompetent persons


- · Chronic heart disease
- · Chronic lung disease
- Diabetes mellitus
- · Cerebrospinal fluid leaks
- Cochlear implant
- · Chronic liver disease

Cigarette smoking

- 2- Functional or anatomic asplenia
 - Sickle cell disease
 - Splenectomy
 - congenital or acquired asplenia

3-Immunocompromised persons

- Congenital or acquired (HIV) immunodeficiet
- C R F & Nephrotic
- Leukaemias & Lymphomas
- · Generalised malignancy
- Diseases treated with immunosuppression(steroids >1 m or Biologics
- Solid organ transplantation

Pneumococcal Disease: Vaccines 360 - Volume 1, Issue 1 - Classification of Vaccines for Pneumococcal Disease

Box 1: Summary of current pneumococcal vaccines licensed for use

PCV-7 4, 6B, 9V, 14, 18C, 19F, and 23F

PCV-10 PCV-7 plus 1, 5, and 7F

PCV-10 plus 3, 6A, and 19A

PCV-15 PCV-13 plus 22F and 33F

PCV-20 PCV-15 plus 8, 10A, 11A, 12F, and 15

Article

Epidemiology of *Streptococcus pneuMoniae* Serotypes in JordanAmongst Children Younger than the Age of 5: A National Cross-Sectional Study

Munir Abu-Helalah ¹,*, Asma'a Al-Mnayyis ², Hamed Alzoubi ³, Ruba Al-Abdallah ⁴, Hussein Jdaitawi ⁵, Omar Nafi ⁶, Kamel Abu-Sal ⁷, Alaa Altawalbeh ⁸, Alia Khlaifat ⁸, Enas Al-Zayadneh ⁹, Ihsan Almaaitah ¹⁰, Ibrahim Borghol ¹¹, Fadi Batarseh ⁴, Omar Okkeh ⁴, Abdallah Dalal ⁴, Ahmad Alhendi ⁴, Mohammad Almaaitah ⁸, Adnan Al-Lahham ¹², Mahmoud Gazo ¹³, Faisal Abu Ekteish ¹⁴ and Ziad Elnasser ³

https://www.mdpi.com/journal/vaccines

Results1

- Analysis of serotypes of 1015 strep. pneumonia cases.
- Lobar pneumonia final diagnosis for 1006 cases
- The PCR positivity rate was 91.8% based on the serum samples of cases with radiological findings suggestive of lobar pneumonia.

Results1

- Only 23 culture-positive cases were identified in comparison to 992 PCR-positive but culture-negative cases.
- 6 Cases were diagnosed with meningitis, 3 cases with sepsis and the remaining 14 cases with pneumonia complicated with septicemia.

Serotype	Frequency for all participant	Frequency for cases <2 year of age, N=754	Mean age	age SD	Presence of Congenital disease	Presence of chronic illness	Percentage in pneumonia cases
1	3.84%	3.32%	19.6	18.3	0.30%	0.89%	3.74%
4	0.79%	0.66%	16.5	17.9	0.00%	0.20%	0.79%
5	0.99%	0.93%	17.0	14.5	0.00%	0.10%	0.99%
6B	16.45%	15.65%	16.2	16.9	0.49%	2.86%	16.45%
7F	0.30%	0.40%	8.6	12.5	0.00%	0.10%	0.30%
9V	0.10%	0.13%	1.0	0.0	0.00%	0.00%	0.10%
14	12.12%	12.60%	14.5	16.3	0.59%	1.38%	11.72%
18C	1.08%	1.19%	12.7	16.1	0.00%	0.10%	1.08%
19F	8.18%	8.62%	15.3	14.5	0.30%	1.18%	8.08%
23F	1.48%	1.72%	9.7	12.6	0.10%	0.30%	1.38%
PCV-13	61.87%	61.54%	15.5	16.6	2.76%	8.57%	60.79%
3	1.18%	0.93%	20.0	17.5	0.10%	0.10%	1.08%
6A	13.60%	14.06%	14.5	17.6	0.79%	1.28%	13.50%
19A	1.77%	1.33%	18.7	17.9	0.10%	0.10%	1.58%
PCV-15	64.14%	63.79%	15.5	16.6	2.76%	8.77%	63.05%
22F	1.58%	1.59%	15.7	16.6	0.00%	0.20%	1.58%
33F	0.69%	0.66%	15.9	17.0	0.00%	0.00%	0.69%
PCV-20	68.47%	68.44%	15.3	16.6	2.96%	9.36%	67.39%
8							
10A	0.20%	0.13%	34.5	29.0	0.00%	0.00%	0.20%
11A	1.77%	1.86%	12.9	15.9	0.00%	0.30%	1.77%
12F	1.87%	1.99%	11.9	15.9	0.00%	0.10%	1.87%
15B	0.49%	0.66%	4.4	6.2	0.20%	0.20%	0.49%

DISCUSSION1

- This study presented serotypes of strep. pneumonia for 1015 IPD cases. Most of cases (992; 97.7%) would have been missed through the routine surveillance based on the culture outcomes that identified only 23 cases
- Majority of cases were identified through qPCR for blood samples of patients with lobar pneumonia.
- Data also revealed that counting on the routine culture techniques will largely underestimate the true burden of strep. pneumonia infections and other bacterial infections highlighting the importance of molecular techniques in the assessment of the burden of different pathogens in developing countries.