Cholinergic Drugs

Yacoub Irshaid MD, PhD, ABCP Department of Pharmacology

Cholinergic Drugs

Cholinomimetics:

- 1. Acetylcholine receptor stimulants
- Agonists that stimulate acetylcholine muscarinic and nicotinic receptors.
- Muscarinic receptors are located on smooth muscle, heart & exocrine glands
- Nicotinic receptors are located in autonomic ganglia.

Cholinergic Drugs

- 2. Cholinesterase inhibitors:
- Drugs which inhibit the hydrolysis of acetylcholine leading to its accumulation at its receptors.
- The excess acetylcholine stimulates cholinoceptors (not selective) to evoke increased response.

- 1) Choline esters: Acetylcholine, Methacholine.
- Alkaloids (naturally occurring): Muscarine, Pilocarpine.

Pharmacokinetics:

- Choline esters are quaternary ammonium compounds, charged, highly water soluble and insoluble in lipids.
- They are poorly absorbed and poorly distributed into most tissues.

- They are hydrolyzed in the GIT and not active by the oral route.
- The tertiary natural cholinomimetic alkaloid pilocarpine is well absorbed from most sites of administration.
- The alkaloid muscarine is a quaternary amine and is less completely absorbed from GIT than tertiary amines but is toxic when ingested.

Pharmacodynamics:

 Most of the direct organ-system effects of cholinomimetics can be predicted from knowledge of the effects of parasympathetic nerve stimulation and the distribution of muscarinic receptors.

Contraction (miosis)
Contraction for near vision
Decrease in rate (negative chronotropy)
Decrease in contractile strength (negative inotropy). Decrease in refrac- tory period
Decrease in conduction velocity (negative dromotropy). Increase in refractory period
Small decrease in contractile strength
Dilation (via EDRF). Constriction (high-dose direct effect)

Lung	
Bronchial muscle	Contraction (bronchoconstriction)
Bronchial glands	Stimulation
Gastrointestinal tract	
Motility	Increase
Sphincters	Relaxation
Secretion	Stimulation
Urinary bladder	
Detrusor	Contraction
Trigone and sphincter	Relaxation
Glands	
Sweat, salivary, lacrimal, nasopharyngeal	Secretion

EDRF, endothelium-derived relaxing factor.

^{*}Only the direct effects are indicated; homeostatic responses to these direct actions may be important (see text).

Eye: [M₃ receptors]

- Contraction of the smooth muscle of the iris sphincter → miosis, pupillary constriction.
- 2. Contraction of the ciliary muscle → accommodation for near vision.
- 3. Facilitation of aqueous humor outflow, which reduces intraocular pressure.

Cardiovascular System [M₂ receptors]:

- Reduction of heart rate → bradycardia (negative chronotropy)
- 2. Decreased AV node conduction velocity (negative dromotropy)
- 3. Decreased contractility of atrial muscle (negative inotropy), and decreases its refractory perioid
- 4. Effects on ventricles are negligible

- 5. Stimulation of M₃ and M₅ receptors in the endothelium of blood vessels increases the synthesis and release of endothelium-dependent relaxing factor (EDRF) which mediates vasodilation, and reduction of blood pressure.
- Cholinomimetics have NO direct effect on blood vessels because of lack of parasympathetic innervation of blood vessels

6. Pilocarpine (IV) has different effects on blood pressure: after the initial reduction in blood pressure, blood pressure will be elevated due to sympathetic ganglionic discharge caused by activation of M₁ receptors on sympathetic ganglia.

Respiratory System: [M₃ receptors]

- Contraction of smooth muscle of the bronchial tree → bronchoconstriction
- 2. Stimulation of secretions of glands in tracheobronchial mucosa

Gastrointestinal Tract: [M₃ receptors]

- 1. Increased gastric secretions.
- 2. Peristaltic activity is increased throughout the gut and most sphincters are relaxed.

Genitourinary tract: [M₃ receptors]

- Stimulation of detrusor muscle of the urinary bladder → contraction.
- 2. Relaxation of bladder sphincter.
- Both promote voiding (urination).
- 3. Human uterus contacts and its vessels dilate in response to muscarinic agonists, but pregnant uterus is not affected.
- 4. Erection (M receptors)

Secretory glands: [M₃ receptors]

1. Stimulation of secretions of salivary (M_1 also), sweat, lacrimal and nasopharyngeal glands.

- Acetylcholinesterase inhibitors or anticholinesterases.
- 1) Edrophonium. Simple alcohol bearing a quaternary ammonium group.
- 2) Carbamates:
- a. Neostigmine. (ester of carbamic acid) and is a quaternary ammonium.

- b. Physostigmine. is a naturally occurring tertiary amine (lipid soluble)
- c. Carbaryl. Very high lipid solubility, it is an insecticide.

- 3. Organophosphates:
- a. Echothiophate (thiocholine derivative of clinical value)
- b. Parathion, Malathion Paraoxon, Malaoxon (Insecticides)
- c. Soman, Sarin (nerve gases).

- These Anticholinesterases have similar pharmacodynamics but differ in chemical structure and pharmacokinetics.
- They also affect nicotinic transmission (why?)

Pharmacokinetics:

- Absorption of neostigmine (quaternary ammonium carbamates) from the conjunctiva, skin and lungs is poor.
- Distribution into the central nervous system (CNS) is negligible.

- Physostigmine, in contrast, is well absorbed from all sites and can be used topically.
- It is also distributed to the CNS (why?).
- It is more toxic than more polar carbamates.
- Carbaryl is very well absorbed from all site and distributed to the CNS extensively.

- The organophosphates (except echothiophate) are well absorbed from skin, lung, gut and conjunctiva. They are extensively distributed to all parts of the body including CNS.
- Echothiophate is highly polar and is used topically in the conjunctiva.

Pharmacodynamics:

- Inhibition of cholinesterases increases the concentration of endogenous acetylcholine.
- Edrophonium produces a short-lived and reversible inhibition of the enzyme (2-10 minutes).
- 2. Carbamates produce a reversible and prolonged inhibition (0.5-6 hours).

- 3. Organophosphates phosphorylate the active site covalently and irreversibly.
- The effect is long-lasting (hundreds of hours).
- Later on, one oxygen-phosphorus bonds is broken leading to strengthening of the phosphorus-enzyme bond, a process called aging of the enzyme (24-48 hours after exposure).

- Oximes (pralidoxime) are nucleophiles and are able to break the phosphorus-enzyme bond before aging occurs, and are called "Cholinesterase regenerators".
- They are part of the treatment of organophosphate but not carbamate poisoning. When? & Why?

Organ-system effects:

- These effects are due to accumulation of acetylcholine at all cholinergic sites.
- Therefore, the actions are similar, but not identical, to those of the direct-acting cholinomimetic agonists.
- 1. Actions on eye, GIT, respiratory tract and urinary tract are similar to the direct-acting cholinomimetic agonists.

- 2. CNS (both muscarinic and nicotinic receptors):
- Low concentrations cause diffuse activation of CNS and an alerting response.
- In higher concentrations, they produce generalized convulsions followed by coma and death.

3. CVS:

- They can stimulate both parasympathetic and sympathetic ganglia (nicotinic receptors), although parasympathetic activation predominates.
- Sympathetic ganglia stimulation may counteract the effects of acetylcholine on vascular beds > vasoconstriction. At toxic doses these agents may cause tachycardia, instead of bradycardia.

- 4. Neuromuscular junction (nicotinic receptors):
- Low concentration increases the strength of contraction in skeletal muscle.
- High concentration leads to fibrillation of the muscle fibers, muscular fasciculation may also occur.
- Marked inhibition of acetylcholinesterase my produce neuromuscular blockade.