- 1. Which of the following statements about bioenergetics is TRUE?
- a. It focuses on the speed of biochemical reactions.
- b. It studies how energy flows and transforms in living systems.
- c. It deals only with enzyme mechanisms.
- d. It ignores thermodynamic laws.
- e. It is unrelated to metabolism.

Answer: b. It studies how energy flows and transforms in living systems.

- 2. According to the first law of thermodynamics:
- a. Energy can be created from nothing.
- b. Energy is always lost as heat.
- c. The total energy in the universe remains constant.
- d. Entropy of the universe decreases over time.
- e. Energy cannot be converted between forms.

Answer: c. The total energy in the universe remains constant.

- 3. A reaction with $\Delta G < 0$ is:
- a. Non-spontaneous
- b. At equilibrium
- c. Spontaneous
- d. Endergonic
- e. Impossible to occur

Answer: c. Spontaneous

- 4. If ΔG° is positive but the concentration ratio [products]/[reactants] is very small, the reaction inside the cell becomes:
- a. More non-spontaneous
- b. Spontaneous
- c. At equilibrium
- d. Completely stopped
- e. Independent of ΔG°

Answer: b. Spontaneous

- 5. At equilibrium:
- a. $\Delta G < 0$
- b. $\Delta G > 0$
- c. $\Delta G = 0$
- d. $\Delta G^{\circ} = 0$
- e. The reaction stops completely

Answer: c. $\Delta G = 0$

- 6. If Keq > 1, this indicates that:
- a. ΔG° is positive
- b. Reactants are favored

- c. Products are favored
- d. The reaction is non-spontaneous
- $e. \Delta G = 0$

Answer: c. Products are favored

- 7. A catalyst affects a chemical reaction by:
- a. Changing ∆G°
- b. Shifting the equilibrium position
- c. Lowering activation energy without changing equilibrium
- d. Increasing ΔG
- e. Making a non-spontaneous reaction spontaneous

Answer: c. Lowering activation energy without changing equilibrium

- 8. When temperature increases, an endothermic reaction will:
- a. Shift toward reactants
- b. Shift toward products
- c. Stop completely
- d. Release heat
- e. Become exothermic

Answer: b. Shift toward products

- 9. Which of the following best describes $\Delta G^{\circ\prime}$?
- a. Free energy under any conditions
- b. Free energy at 0°C and 1 atm
- c. Standard free energy change at pH 7
- d. Free energy under non-biological conditions
- e. Always equal to zero

Answer: c. Standard free energy change at pH 7

- 10. When [Reactants] are high and [Products] are low:
- a. ΔG becomes positive
- b. The reaction is at equilibrium
- c. ΔG is negative and the reaction proceeds forward
- d. The reaction is non-spontaneous
- e. ΔG° increases

Answer: c. ΔG is negative and the reaction proceeds forward