Energy and human life

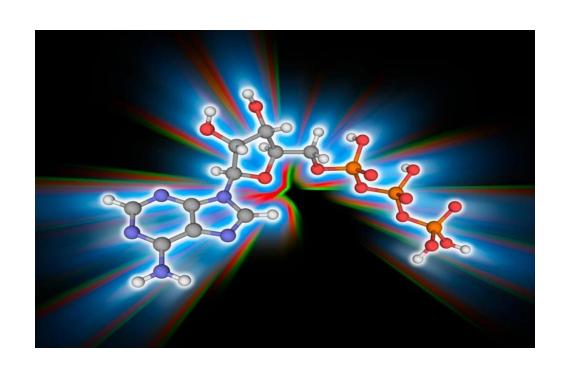
PRINCIPIES OF CHBICHER GETTCS

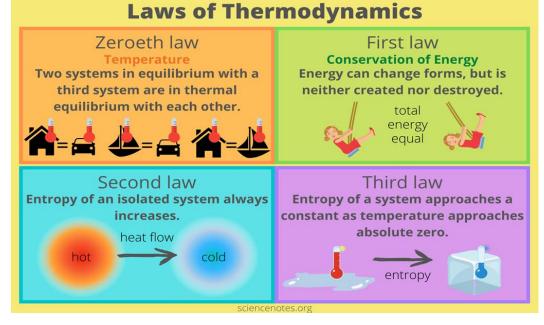
- Fats
- Others

body's "energy currency"

Chemical waste

- Carbon dioxide
- Water


Heat


DEFINITION

- The <u>quantitative study of the energy transductions</u> that occur in living cells and of the nature and function of the chemical processes underlying these transductions.

LECTURE 1: THE LAWS OF ENERGY AND CELLULAR CURRENCY

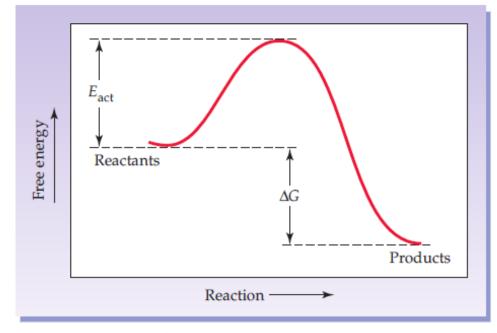
THE CLINICAL STAGE: A CASE OF LETHARGY

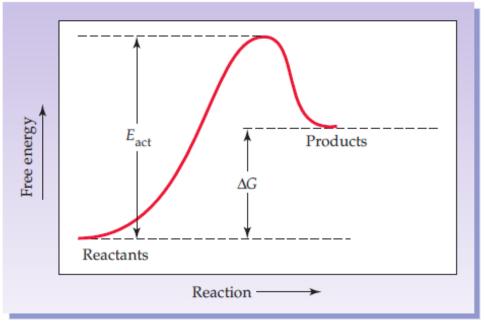
- Clinical Presentation
 - A 2-month-old infant presents with lethargy, poor feeding, and hypoglycemia indicating a metabolic crisis.
- Laboratory Findings
 - Initial labs reveal low blood glucose and mild metabolic acidosis, signaling disrupted metabolism.
- Biochemical Diagnostic Question
 - The clinical challenge is differentiating fuel deficiency from impaired energy utilization in the patient.
- Importance of Bioenergetics
 - Understanding bioenergetics is critical for diagnosing and managing metabolic crises in pediatric patients.

BIOLOGICAL ENERGY TRANSFORMATIONS OBEY THE LAWS OF THERMODYNAMICS

The 1st law
(conservation of
energy): for any
change, the total
amount of energy in
the universe remains
constant;

The 2nd law of thermodynamics: the universe always tends toward increasing disorder (or); in all natural processes, the entropy of the universe increases.


Signs for spontaneous systems...



WHY DO CHEMICAL REACTIONS OCCUR?

- The concept of activation energy
- $-\Delta G$ and ΔG^0

(a) An exergonic reaction

(b) An endergonic reaction

AG IS A STATE FUNCTION?!

$ullet \Delta G$ is not affected by the mechanism of the reaction

$$\begin{array}{c} \blacksquare A \to B \to C \\ \Delta G_{A \to B} = \square B - GA \\ \Delta G_{B \to C} = \square GC - GB \\ \hline GC - GA = \Delta G_{A \to C} \end{array}$$

Combustion of glucose in calorimeter

Glucose +
$$O_2 \rightarrow CO_2 + H_2O$$


 $\Delta G = -680 \text{ kcal/mol}$

In the cell

Glucose
$$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow CO_2 + H_2O$$
 $\Delta G = -680 \text{ kcal/mol}$

AG IS AFFECTED BY CONCENTRATION

HOW $\triangle G$ AND $\triangle G^0$ RELATE?

-Concentrations of reactants and products = 1 mole/L

$$-\Delta G = \Delta G^0 + RT \ln \frac{[Products]}{[Reactants]}$$

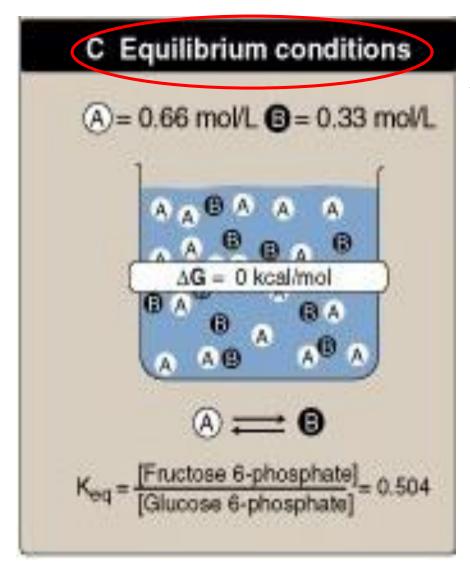
-
$$\Delta G$$
= ΔG^0 + RT 2.3 log [Products] [Reactants]

THE STANDARD FREE-ENERGY CHANGE IS DIRECTLY RELATED TO THE EQUILIBRIUM CONSTANT (Keg)

end!

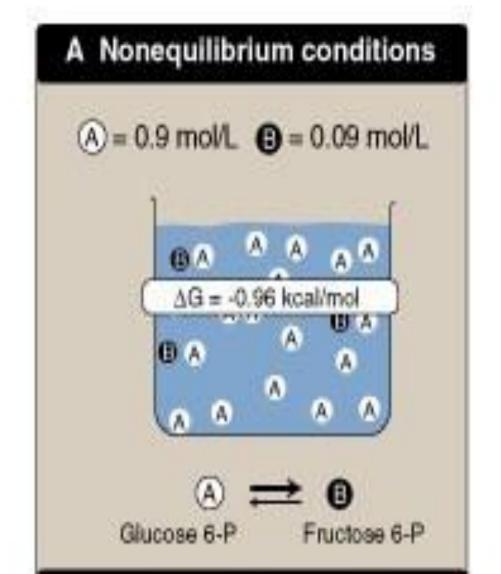
Equilibrium is reached at the

At equilibrium: concentration are fixed; rates are exactly equal


The concentrations define the equilibrium constant

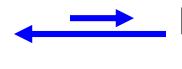
$$a A + b B \Longrightarrow c C + d D$$
 $K \text{ very small}$
 $K \text{ very large}$
 $K \text{ very large}$

Glucose 6- phosphate 0.66 mol/L

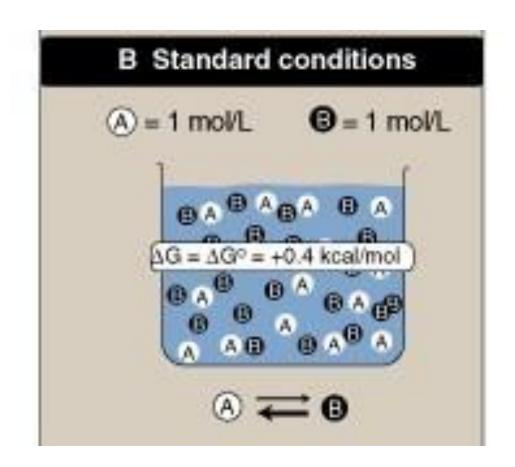

Fructose 6- phosphate 0.33 mol/L

$$\Delta G = \Delta G^{\circ} + RT 2.3 \log 0.33 / 0.66$$

$$\Delta G^{\circ} = + 0.4 \text{ kcal/mol}$$


$$\Delta G^{\circ} = + 0.4 \text{ kcal/mol}$$

$$\Delta G = \Delta G^{\circ} + RT 2.3 \log 0.09/0.9$$


$$\Delta G = -0.96$$

1 mol/L

Glucose 6- phosphate Fructose 6- phosphate 1 mol/L

$$\Delta G = \Delta G^{\circ} + RT 2.3 \log 1/1$$

$$\Delta G = \Delta G^{\circ}$$

$\Delta G \& K_{eq}$

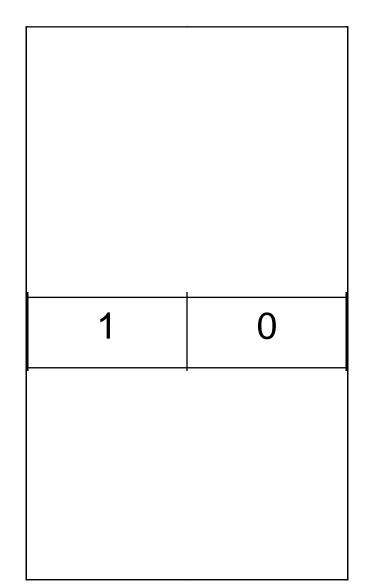
For a reaction
$$A + B \leftrightarrow C + D$$

$$\Delta G = \Delta G^{o} + RT \ln \left(\frac{[C][D]}{[A][B]} \right)$$

- At equilibrium, $\triangle G = 0$
- **-** Can a reaction has a +ve $\triangle G^0$ & still be favorable?

K'eq	ΔG °' kJ/mol	Starting with 1 M reactants & products, the reaction:
104	- 23	proceeds forward (spontaneous)
10 ²	- 11	proceeds forward (spontaneous)
$10^0 = 1$	0	is at equilibrium
10-2	+ 11	reverses to form "reactants"
10-4	+ 23	reverses to form "reactants"

$$\Delta \mathbf{G} = \Delta \mathbf{G}^{o} + \mathbf{R} \mathbf{T} \ln \left[\frac{[\mathbf{C}] [\mathbf{D}]}{[\mathbf{A}] [\mathbf{B}]} \right]$$


$$0 = \Delta G^{o'} + RT \ln \left[\frac{[C] [D]}{[A] [B]} \right]$$

$$\Delta \mathbf{G}^{o'} = -\mathbf{RTln} \left[\frac{[\mathbf{C}] [\mathbf{D}]}{[\mathbf{A}] [\mathbf{B}]} \right]$$

defining
$$\mathbf{K'}_{eq} = \left[\frac{[\mathbf{C}] [\mathbf{D}]}{[\mathbf{A}] [\mathbf{B}]} \right]$$

$$\Delta G^{o'} = -RT \ln K'_{eq}$$

ΔG° AND K_{eq}

How much change in delta G compared to changes in Keq

If
$$K_{eq} = 1$$
, then $\Delta G^{o} = 0$

If Keq > 1, then
$$\Delta G^{\circ}$$
 < 0

If Keq < 1, then
$$\Delta G^0 > 0$$

ΔG & K_{eq}

- $-\Delta G$ is additive for multiple subsequent reactions
- K_{eq} is multiplicative for subsequent reactions

Glucose +
$$P_i \longrightarrow glucose$$
 6-phosphate + H_2O
 $\Delta G'^{\circ} = 13.8 \text{ kJ/mol}$

$$ATP + H_2O \longrightarrow ADP + P_i$$
 $\Delta G'^{\circ} = -30.5 \text{ kJ/mol}$

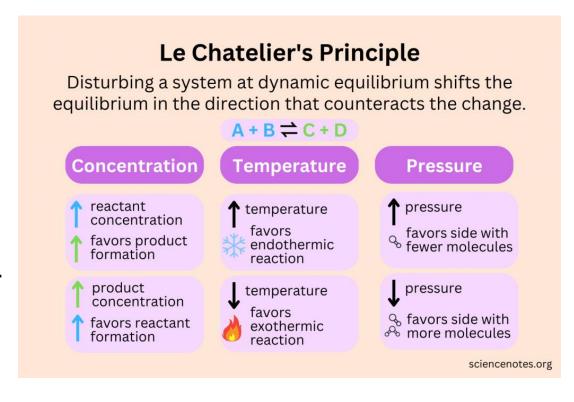
- (1) Glucose + $P_i \longrightarrow glucose 6$ -phosphate + H_2O
- $\frac{(2) \qquad ATP + H_2O \longrightarrow ADP + P_i}{Sum: \qquad ATP + glucose \longrightarrow ADP + glucose 6-phosphate}$

$$\Delta G'^{\circ} = 13.8 \text{ kJ/mol} + (-30.5 \text{ kJ/mol}) = -16.7 \text{ kJ/mol}$$

$$K'_{eq_1} = \frac{[glucose 6-phosphate]}{[glucose][P_i]} = 3.9 \times 10^{-3} \text{ m}^{-1}$$

$$K'_{eq_2} = \frac{[ADP][P_i]}{[ATP]} = 2.0 \times 10^5 \text{ M}$$

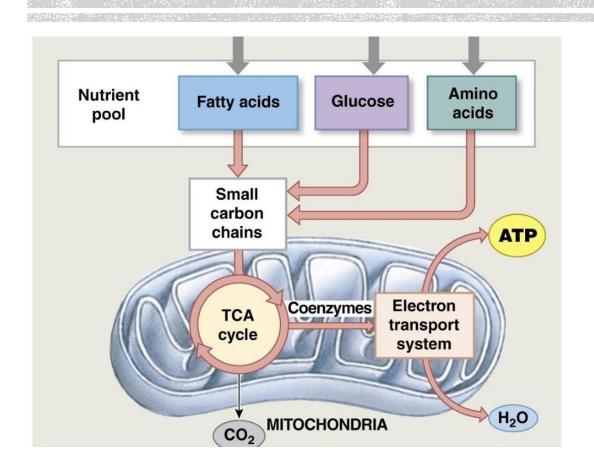
$$K'_{eq_3} = \frac{[glucose 6-phosphate][ADP][P_i]}{[glucose][P_i][ATP]}$$


$$= (K'_{eq_1})(K'_{eq_2}) = (3.9 \times 10^{-3} \text{ m}^{-1}) (2.0 \times 10^5 \text{ m})$$

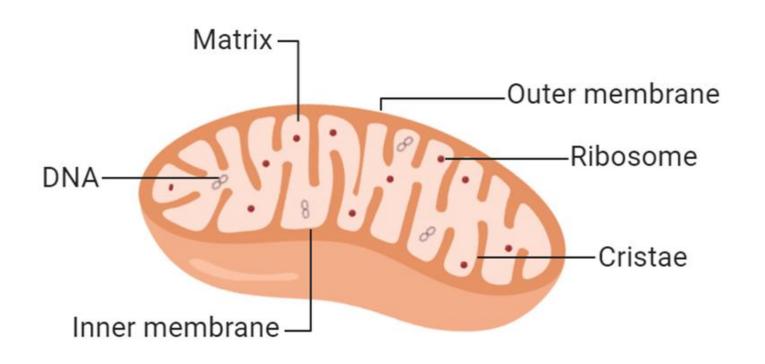
$$= 7.8 \times 10^2$$

THE EFFECT OF CHANGING CONDITIONS ON EQUILIBRIA

- When a stress is applied to a system at equilibrium, the equilibrium shifts to relieve the stress
- Effect of Changes in Concentration
 - What happens if a reactant/product is continuously supplied/ removed?
 - Metabolic reactions sometimes take advantage of this effect
- Effect of Changes in Temperature
 - Endothermic/exothermic are favored by increase/decrease in temperature, respectively.
- Effect of a catalyst on equilibrium



PRINCIPLES OF BIOENERGETICS


2- Phosphoryl Group Transfers and ATP

THE ENERGY FLOW

- Ingestion, digestion, & absorption
- Metabolism (Acetyl CoA)
- TCA
- Oxidative phosphorylation

THE ENERGY MACHINERY OF THE CELL

- Prokaryotic cells vs. eukaryotic cells
- The mitochondria (singular, mitochondrion) (90% of the body's energy ATP)
- The number of mitochondria is greatest in eye, brain, heart, & muscle, where the need for energy is greatest
- The ability of mitochondria to reproduce (athletes)
- Maternal inheritance

ATP

- ATP is the energy currency of the cell
- What is a high energy molecule?
- Why ATP?
 - Has an intermediate energy value, so can be coupled

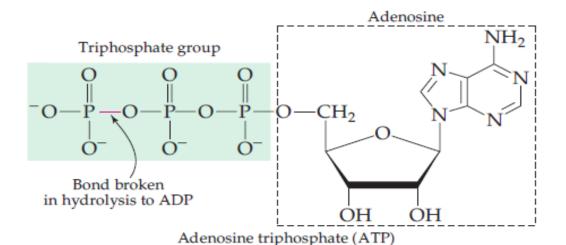
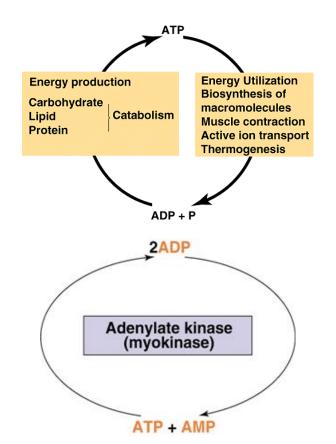
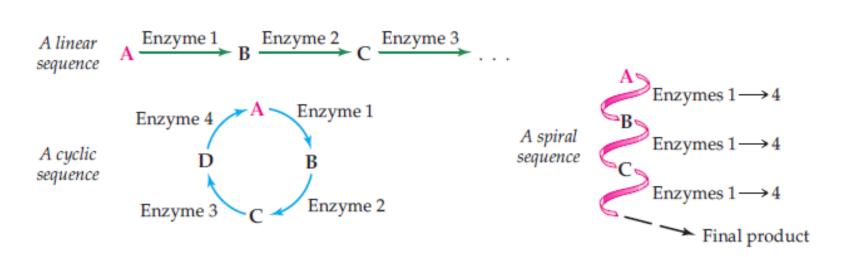



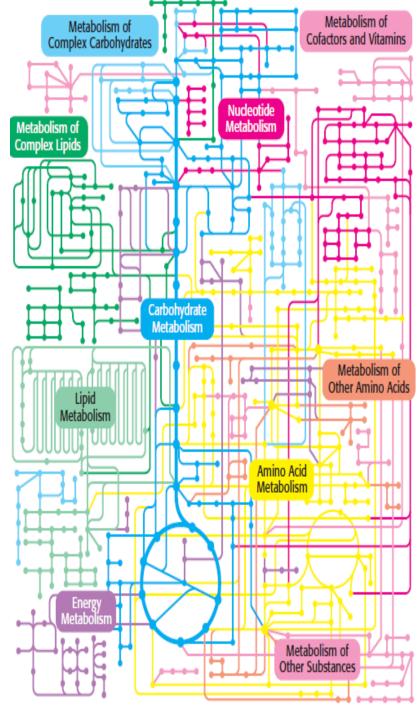
TABLE 13-6 Standard Free Energies of Hydrolysis of Some Phosphorylated Compounds and Acetyl-CoA (a Thioester)

	ΔG°	
	(kJ/mol)	(kcal/mol)
Phosphoenolpyruvate	-61.9	-14.8
1,3-bisphosphoglycerate		
(→ 3-phosphoglycerate + P _i)	-49.3	-11.8
Phosphocreatine	-43.0	-10.3
$ADP (\rightarrow AMP + P_i)$	-32.8	-7.8
$ATP (\rightarrow ADP + P_i)$	-30.5	-7.3
$ATP (\rightarrow AMP + PP_i)$	-45.6	-10.9
$AMP (\rightarrow adenosine + P_i)$	-14.2	-3.4
$PP_i (\rightarrow 2P_i)$	-19.2	-4.0
Gucose 1-phosphate	-20.9	-5.0
Fructose 6-phosphate	-15.9	-3.8
Gucose 6-phosphate	-13.8	-3.3
Gycerol 1-phosphate	-9.2	-2.2
Acetyl-CoA	-31.4	-7.5

IS ATP A GOOD LONG-TERM ENERGY STORAGE MOLECULE?

- As food in the cells is gradually oxidized, the released energy is used to re-form the ATP so that the cell always maintains a supply of this essential molecule



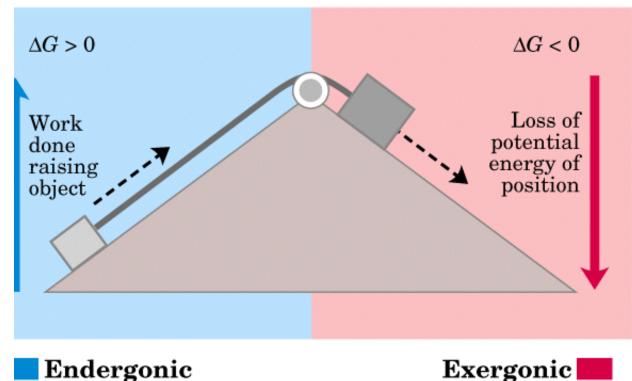

Tissue	ATP turnover (mole/day)	
Brain	20.4	
Heart	11.4	
Kidney	17.4	
Liver	21.6	
Muscle	19.8	
Total	90.6	

BIOCHEMICAL REACTIONS OR PATHWAYS!

- Are <u>interdependent</u>
- Are subjected to thermodynamics laws
- Coordinated by sensitive means of communication
- Allosteric enzymes are the predominant regulators
- Pathways are <u>linear</u>, <u>cyclic or spiral</u>

EXERGONIC REACTIONS AND PATHWAYS IN BIOCHEMISTRY

- Complex structures → simple structures


- More specifically
 - Hydrolysis reactions
 - Decarboxylation reactions (release of CO_2)

pyruvate (C3)
$$\rightarrow$$
 acetyl-CoA(C2) +CO₂

- Oxidation with \mathbf{0}_2

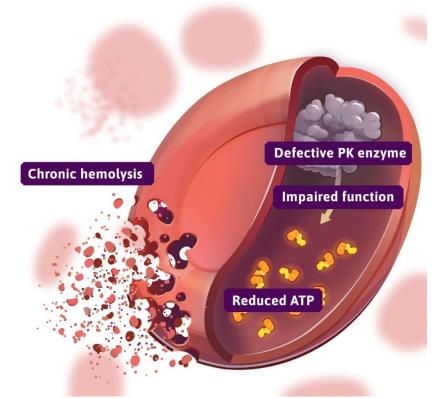
(a) Mechanical example

HOW DO OUR CELLS GET ENERGY FOR UNFAVORABLE BIOCHEMICAL WORK? MAKING THE IMPOSSIBLE POSSIBLE

The coupling concept - phosphoryl transfer reactions

CLINICAL CASE: PYRUVATE KINASE DEFICIENCY

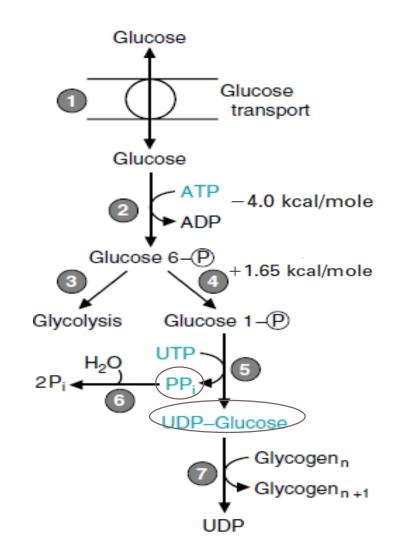
Role of Pyruvate Kinase


 Pyruvate kinase catalyzes a crucial step in glycolysis important for ATP generation in red blood cells.

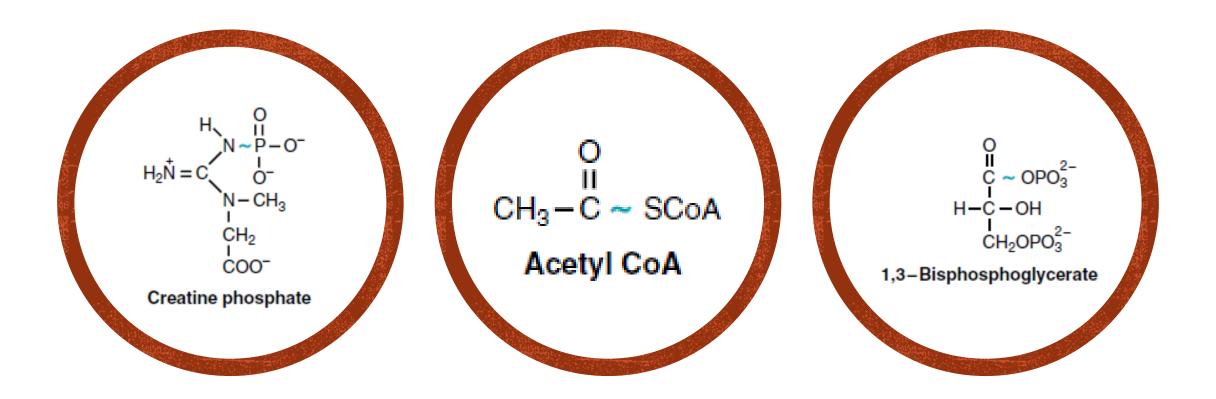
Impact of Deficiency

 Deficiency in pyruvate kinase reduces ATP production, causing red blood cell rigidity and hemolytic anemia.

Energy Coupling in Cells


 This case highlights how energy coupling via ATP is vital for maintaining cellular health and function.

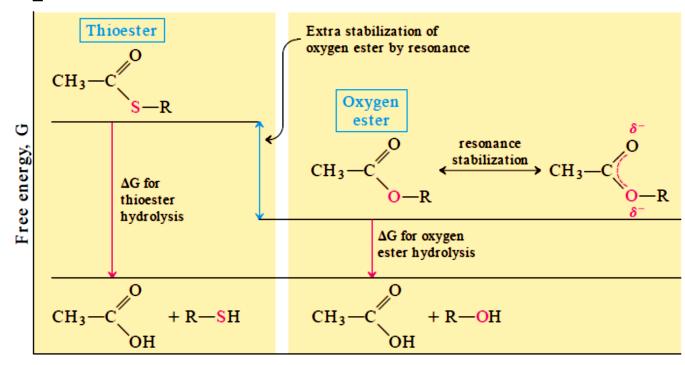
HOW DO OUR CELLS GET ENERGY FOR UNFAVORABLE BIOCHEMICAL WORK?


- I. ΔG^0 Values are additive
 - i. Through phosphoryl transfer reactions:
 - Step 2 (+3.3 vs. -4 kcal/mole)
 - Step 2 + 4 = -2.35 kcal/mole
 - The net value for synthesis is irrelevant to the presence or absence of enzymes
 - ii. Activated intermediates (step 4 is facilitated by steps 5&6)
- II. ΔG Depends on Substrate and Product Concentration (step 4 has a ratio of 6/94; +1.65 kcal/mol, if 3/94; -0.4kcal/mol)

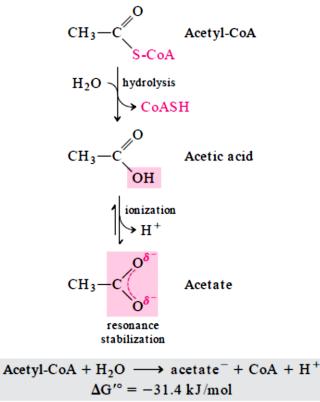
		Concentration (mm)*		
	ATP	ADP [†]	AMP	Pi
Rat hepatocyte	3.38	1.32	0.29	4.8
Rat myocyte	8.05	0.93	0.04	8.05
Rat neuron	2.59	0.73	0.06	2.72
Human erythrocyte	2.25	0.25	0.02	1.65
E coli cell	7.90	1.04	0.82	7.9

THE FREE-ENERGY CHANGE FOR ATP HYDROLYSIS IS LARGE AND NEGATIVE

Not fixed and depends on concentrations

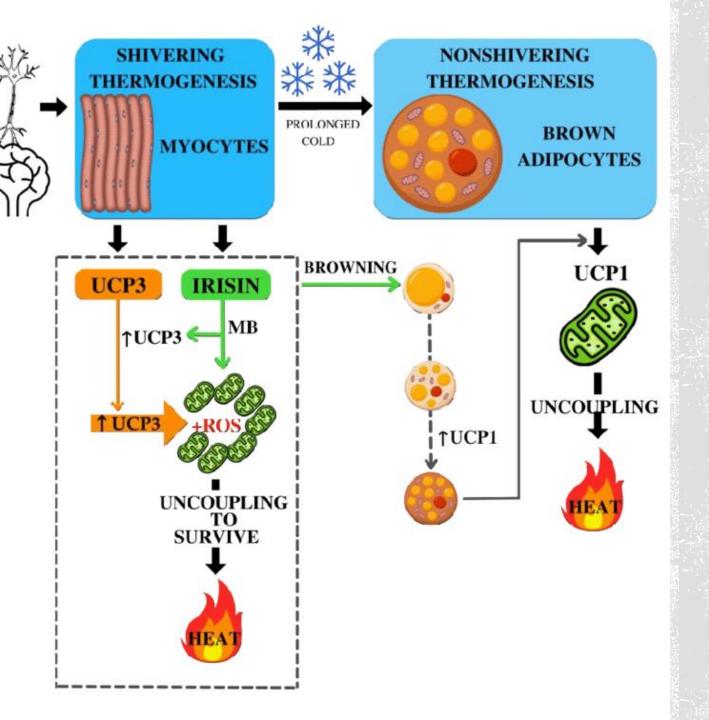

HOW DO OUR CELLS GET ENERGY FOR UNFAVORABLE BIOCHEMICAL WORK?

III. Activated Intermediates other than ATP; UTP is used for combining sugars, CTP in lipid synthesis, and GTP in protein synthesis



THE ACETYL COA AS AN EXAMPLE OF COUPLING

- CoA is a universal carrier (donor) of Acyl groups
- Forms a thio-ester bond with carboxyl group


- Acetyl CoA + H₂O Acetate + CoA ΔG° = -7.5kcal
- > Acetylcholine + H₂O Acetate + Choline ΔG° = -3 kcal

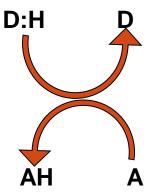
Acetyl-CoA + H₂O
$$\longrightarrow$$
 acetate⁻ + CoA + H⁺

$$\Delta G'^{\circ} = -31.4 \text{ kJ/mol}$$

THERMOGENESIS

- The first law of thermodynamics
- Heat production is a natural consequence of "burning fuels"
- Thermogenesis refers to energy expended for generating heat
- Shivering thermogenesis
- Non-shivering thermogenesis

PRINCIPLES OF BIOENERGETICS


3- Biological Oxidation-Reduction Reactions (Redox)

OXIDATION-REDUCTION REACTIONS (REDOX)

• Oxidation:

- Gain of Oxygen
- Loss of Hydrogen
- Loss of electrons
- Reduction:
 - Gain of Hydrogen
 - Gain of electron
 - Loss of Oxygen

- E (redox Potential): it is a POTENTIAL ENERGY that measures the tendency of oxidant/reductant to gain/lose electrons, to become reduced/oxidized
- Electrons move from compounds with lower reduction potential (more negative) to compounds with higher reduction potential (more positive)
- Oxidation and reduction must occur simultaneously

REDUCTION POTENTIAL

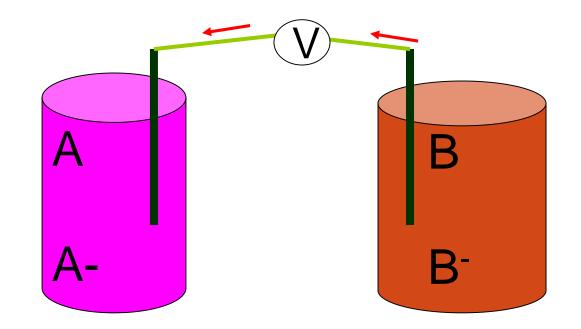
$$-A-P+B \longrightarrow A+B-P$$

Type of reaction?

What determine the direction of the reaction?

$$-A^{++} + B^{++}$$
 \longrightarrow $A^{+} + B^{+++}$

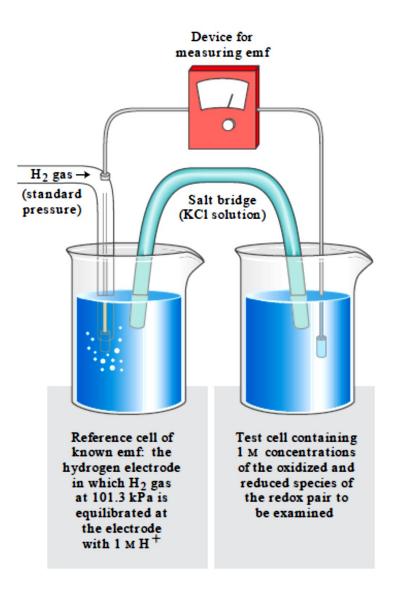
Type of reaction


What determine the direction of the reaction?

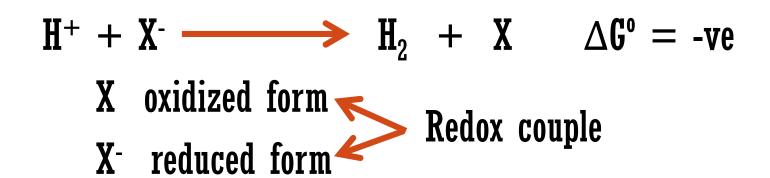
REDUCTION POTENTIAL AND DIRECTION OF THE REACTION

A + B-
$$\longrightarrow$$
 A- + B \triangle G° = -ve

B oxidized form Redox couple


B- reduced form

WHAT IS THE STANDARD?


- Hydrogen electrode
- •H₂ Gas sensor

$$\mathrm{H}^+ + e^- \longrightarrow \frac{1}{2} \mathrm{H}_2$$

REDUCTION POTENTIAL AND DIRECTION OF THE REACTION

X- has higher tendency to lose electrons than H₂ does

Negative reduction potential

STANDARD REDUCTION POTENTIAL (E⁰)

$$E = E^{\circ} + \frac{RT}{n\mathcal{F}} \ln \frac{\text{[electron acceptor]}}{\text{[electron donor]}}$$

$$E = E^{\circ} + \frac{0.026 \text{ V}}{n} \ln \frac{\text{[electron acceptor]}}{\text{[electron donor]}}$$

REDUCTION POTENTIAL

Oxidized + e	→ Reduced	$\Delta E^{o}(V)$
Succinate	α ketoglutarate	- 0.67
Acetate	Acetaldehyde	- 0.60
NAD+	NADH	- 0.32
Acetaldehyde	Ethanol	- 0.20
Pyruvate	Lactate	- 0.19
Fumarate	Succinate	+ 0.03
Cytochrome ⁺³	Cytochrome ⁺²	+ 0.22
oxygen	water	+ 0.82

TABLE 13-7 Standard Reduction Potentials of Some Biologically Important Half-Reactions, at pH 7.0 and 25 °C (298 K)

Hulf-reaction	<i>E</i> ° (<i>V</i>)
$\frac{{}_{2}\text{O}_{2}+2\text{H}^{+}+2e^{-}\longrightarrow\text{H}_{2}\text{O}}{}$	0.816
$\mathbb{R}^{3+} + e^- \longrightarrow \mathbb{R}^{2+}$	0.771
$NO_3^- + 2H^+ + 2e^- \longrightarrow NO_2^- + H_2O$	0.421
Cytochrome $f(\mathbb{R}^{3+}) + e^{-} \longrightarrow \text{cytochrome } f(\mathbb{R}^{2+})$	0.365
$\text{Re}(\text{CN}_6^{3-} \text{ (femicyanide)} + e^- \longrightarrow \text{Re}(\text{CN}_6^{4-})$	0.36
Cytochrome a_3 (\mathbb{R}^{3+}) + $e^- \longrightarrow$ cytochrome a_3 (\mathbb{R}^{2+})	0.35
$O_2 + 2H^+ + 2e^- \longrightarrow H_2O_2$	0.295
Cytochrome $a(\text{Re}^{3+}) + e^{-} \longrightarrow \text{cytochrome } a(\text{Re}^{2+})$	0.29
Cytochrome c (Re^{3+}) + $e^- \longrightarrow \text{cytochrome } c$ (Re^{2+})	0.254
Cytochrome c_1 (Re ³⁺) + $e^- \longrightarrow$ cytochrome c_1 (Re ²⁺)	0.22
Cytochrome b (\mathbb{R}^{3+}) + $e^- \longrightarrow$ cytochrome b (\mathbb{R}^{2+})	0.077
Ubiquinone + $2H^+ + 2e^- \longrightarrow ubiquinol + H_2$	0.045
Furnarate ²⁻ + 2H ⁺ + 2e ⁻ \longrightarrow succinate ²⁻	0.031
$2H^+ + 2e^- \longrightarrow H_2$ (at standard conditions, pH0)	0.000
Grotonyl-CoA + $2H^+ + 2e^- \longrightarrow butyryl-CoA$	-0.015
Oxaloacetate ²⁻ + 2H ⁺ + 2e ⁻ \longrightarrow malate ²⁻	-0.166
Pyruvate $^- + 2H^+ + 2e^- \longrightarrow lactate^-$	-0.185
Acetaldehyde + $2H^+ + 2e^- \longrightarrow \text{ethanol}$	-0.197
$\mathbf{FAD} + 2\mathbf{H}^{+} + 2e^{-} \longrightarrow \mathbf{FADH}_{2}$	-0.219*
Glutathione + $2H^+ + 2e^- \longrightarrow 2$ reduced glutathione	-0.23
$S + 2H^+ + 2e^- \longrightarrow H_2S$	-0.243
Lipoic acid + $2H^+ + 2e^- \longrightarrow dihydrolipoic$ acid	-0.29
$NAD^+ + H^+ + 2e^- \longrightarrow NADH$	-0.320
$NADP^+ + H^+ + 2e^- \longrightarrow NADPH$	-0.324
Acetoacetate + $2H^+ + 2e^- \longrightarrow \beta$ -hydroxybutyrate	-0.346
α -Ketoglutarate + CO_2 + $2H^+$ + $2e^ \longrightarrow$ isocitrate	-0.38
$2H^+ + 2e^- \longrightarrow H_2 \text{ (at pH7)}$	-0.414
$\operatorname{Fennedoxin}(\operatorname{Fe}^{3+}) + e^{-} \longrightarrow \operatorname{fenredoxin}(\operatorname{Fe}^{2+})$	-0.432

CALCULATION OF $\triangle G^{\circ}$ FROM $\triangle E^{\circ}$

-Calculate ΔG° of the following reaction

NADH +
$$1/20_2$$
 \longrightarrow NAD+ + H_20
NADH \longrightarrow NAD+ + $2e^ \triangle E^o = +0.32$ V
 $0 + 2e^ \longrightarrow$ 0^{2-} $\triangle E^o = +0.82$ V
 $\triangle G^o = -52.6$ kcal/mol

OXIDATION-REDUCTION REACTIONS (REDOX)

- $\blacksquare \triangle E = E_A E_D$
- $\blacksquare \triangle E^p =$ at standard condition
- **-** Does ΔE determine the feasibility of a reaction?
- In other words; energy (work) can be derived from the transfer of electrons Or
- Oxidation of food can be used to synthesize ATP

OXIDATION-REDUCTION REACTIONS (REDOX)

- Always involve <u>a pair</u> of chemicals: an electron donor and an electron acceptor (Food vs. NAD+)
- NAD+ vs. FAD
- NAD+ vs. NADP+ (fatty acid synthesis and detoxification reactions)

