Adrenoeceptor Antagonists

(Adrenergic Antagonists)

DR. ALIA SHATANAWI

α - Adrenoreceptor Blockade

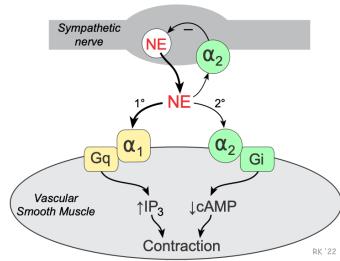
Pharmacodynamics:

A. Cardiovascular system:

Block of α_1 -receptors in arterioles leads to vasodilation, lowering of peripheral vascular resistance and blood pressure.

α - Adrenoreceptor Blockade

- Block of α_1 -receptors in venules leads to venodilation, postural hypotension and reflex tachycardia.
- Tachycardia is more marked with nonselective α -blockers (α_1 , α_2) because of increased release of norepinephrine (why?).


α - Adrenoreceptor Blockade

B. Other effects:

- Miosis (α_1 receptors in dilator pupillae).
- Nasal stuffiness (α₁ receptors in blood vessels)
- Decreased resistance to the outflow of urine (α_{1A} and α_{1B} receptors in the base of urinary bladder and the prostate).

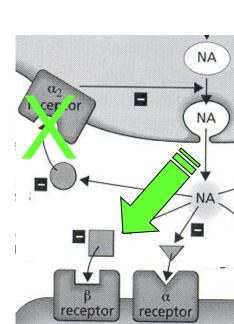
α - Adrenoreceptor Blockade non-selective

- Non-selective α -antagonists have limited beneficial effects on blood pressure reduction, due to associated $\alpha 2$ block which increases norepinephrine effects (remember, block of the negative feedback $\alpha 2$ receptor will increase NE release).
- \bullet This may cause increased $\beta 1$ stimulation with tachycardia

Alpha Adrenergic Antagonists

PHENOXYBENZAMINE

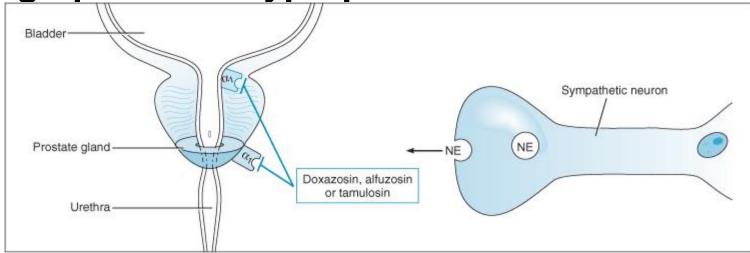
- Covalent, irreversible blockade
 - · may require days to recover
- Monselective (slight preference for alpha-1)
- Primary use: pheochromocytoma
- **Urinary obstruction (BPH)**
- Side effects
 - orthostatic hypotension
 - nasal congestion


Pheochromocytoma

- A neuroendocrine tumor of the medulla of the adrenal glands that secretes excessive amounts of catecholamines norepinephrine and epinephrine
- Signs and Symptoms:
 - Elevated heart rate
 - Elevated blood pressure
 - Headaches
 - Weight loss
 - Elevated blood glucose

Alpha Adrenergic Antagonists

PHENTOLAMINE


- Monselective (equal affinity for both)
- >Competitive blockade
- Primary use: pheochromocytoma
- Not good general antihypertensive
 - •reflex tachycardia (α-2 block)
- Side effects
 - · orthostatic hypotension
 - reflex cardiac stimulation
 - nasal congestion

Selective a1-blockers

- Selectively block α₁ receptors
 - -ie. Prazosin, Alfuzosin, Doxazosin,, Terazosin, Tamsulosin
 - Used in the treatment of chronic hypertension

 Also used to treat urinary retention in men with benign prostatic hyperplasia

Alpha Adrenergic Antagonists

PRAZOSIN

- Selective alpha-1 antagonist
- Primary use: antihypertensive
- Little or no alpha-2 blockade
 - · limited reflex tachycardia
- Dilates arterial and venous beds
 - Lower blood pressure by causing relaxation of both arterial and venous smooth muscle.
- **Improve urinary flow in BPH**
- >"First-Dose Phenomenon"
 - give it at bedtime

- The drugs which block β -receptors are very widely used in therapeutics, mostly for their antihypertensive effect, and efficacy in the treatment of angina and some arrhythmias.
- In the 1960's β -blockers were developed, and the earliest prototype β -blocker was Propanolol, a nonspecific β receptors antagonist, which is still widely used.

 These drugs occupy β receptors and competitively inhibit occupation of these receptors by catecholamines.

Classifications:

- β-Adrenoceptor antagonists are not the same, regarding their antagonism of receptors and lipophilicity.
- Lipophilic antagonists cross the blood brain barrier and affect the central nervous system in addition.

- 1. Non-selective ($\beta_1 = \beta_2$): Propranolol, Timolol, Sotalol.
- 2. Non-selective ($\beta_1 = \beta_2 \ge \alpha_1 > \alpha_2$): Carvedilol, Labetalol. They have alpha blocking activity also.
- 3. β_1 selective or cardioselective ($\beta_1 >>> \beta_2$): Atenolol, Bisoprolol, Metoprolol, Esmolol.

- Non-selective
 - ie Nadolol, pindolol, propranolol, tomilol
 - Block both β_1 receptors in cardiac tissue and β_2 in smooth muscle, liver and other tissues
- Blockade of β_1 reduces sympathetic stimulation of heart...

Therefore, negative chronotrope Inotrope

•Blockade of β_2 may cause bronchoconstriction and limit glycogenlysis \rightarrow Adverse effects

Pharmacodynamics:

A. Effects on the cardiovascular system: .1Lowering of blood pressure in patients with hypertension. The mechanism is probably multifactorial and may involve:

- a) Negative inotropic effect on the heart \rightarrow reduction of cardiac output.
- b) Suppression of renin-angiotensin system.
- c) A centrally-mediated effect due to reduction of sympathetic outflow from the CNS.

- 2. Negative chronotropic effect \rightarrow bradycardia.
- 3. Slowing of AV nodal conduction and prolonging its refractory period. This is useful for treating supraventricular arrhythmias.

- B. Effects on respiratory tract: Increased airway resistance (bronchoconstriction) due to block of β_2 receptors.
- C. Effects on the eye: Reduce intraocular pressure (useful for glaucoma) due to reduction in aqueous humor production (timolol.(

- D. Metabolic and endocrine effects:
- 1. Inhibition of lipolysis (β_3)
- 2. Inhibition of glycogenolysis (β_2).
- 3. Impair recovery from hypoglycemia in insulindependent diabetic patients.
- 4. Chronic use increase plasma concentrations of VLDL and decreased concentration of HDL→ atherosclerosis → increased risk of coronary artery disease.

- Abrupt discontinuation of these drugs leads to rebound effects (exaggeration of the condition they were used to treat) because of upregulation (increased number) of receptors during treatment.
- Therefore, when these drugs are to be discontinued, tapering of the dose (gradual reduction) rather than sudden withdrawal is recommended.

Propranol

- Therapuetic uses are wide and include:
- Antihypertensive: the antihypertensive effect is still not clear. However, it inhibit the renal secretion of the renin, which may play a role.
- Prophylaxis of angina pectoris and ventricular and superventricular <u>arrhythmia</u>, long-term prophylaxis of <u>myocardiac infarction</u> (with a high risk of infarction and sudden death).
- It is also used as a prophylactic of migraine.
- In treatment of <u>Hyperthyroidism</u>, effective in blunting the widespread sympathetic stimulation that occur in acute hyperthyroidism.
- Propanolol and other β blocker may be lifesaving in protecting against serious <u>cardiac arrhythmias</u>

Propranol

Contraindications:

- a. Propanolol must never given to any individual with chronic obstruction pulmonary disease because it causes an immediate contraction of the bronchiolar smooth muscles, which may result in a serious and potential lethal side effect.
- b. Propanolol effect the carbohydrate metabolism, and may increase the action of insulin, so diabetics treated with insulin should use it with caution.

Selective Beta-1 Blockers

- Have greater affinity for β_1 than for β_2 receptors
 - ie: Acebutolol, Atenolol, Esmolol, Metoprolol

CARDIOSELECTIVE b-BLOCKERS

 Produce fewer adverse effects than non-selective, but their selectivity is not absolute

ESMOLOL

- Esmolol is an ultra-short-acting β_1 -selective adrenoceptor antagonist.
- It is rapidly inactivated by red blood cells esterases. (t½ ~ 10 min).
- It is useful in controlling supraventricular arrhythmias, arrhythmias associated with thyrotoxicosis.

METOPROLOL

- Selective beta-1 blocker
- Metoprolol has a significantly longer half-life
- >(3-7 hours) compared to esmolol
- **Primary uses:**
 - antihypertensive
 - ischemic heart disease (depress HR)
 - ·little effect on normal heart or BP at rest
- Less tendency for bronchoconstriction

Labetalol and carvedilol

- These two agents are reversible β blockers and $\alpha 1$ blocker (producing peripheral vasodilatation).
- Non-selective ($\beta 1 = \beta 2 \ge \alpha 1 > \alpha 2$)They have alpha blocking activity also.
- Carvedilol is extensively metabolized in the liver.
- It attenuates oxygen free radical-initiated lipid peroxidation.
- It inhibits vascular smooth muscle mitogenesis.
- Labetalol: Unique Feature Does not significantly decrease uteroplacental blood flow
 - Important in preeclampsia and pregnancy-induced hypertension
 - Better maternal/fetal safety profile compared to some other agents
- Labetolol is also used to treat hypertensive emergencies because it can rapidly lower blood pressure.