pH and buffers

	TABLE 2 [OH⊖] 1	TABLE 2.3 Relation of $[H^{\oplus}]$ and $[OH^{\ominus}]$ to pH		
Kw	pH	[H⊕] (M)	[OH⊖] (M)	
- Kuuis called the ice product for water	0	1	10^{-14}	
• KW IS called the ion product for water	1	10 ⁻¹	10 ⁻¹³	
	2	10 ⁻²	10 ⁻¹²	
	3	10 ⁻³	10 ⁻¹¹	
	4	10^{-4}	10^{-10}	
	5	10 ⁻⁵	10 ⁻⁹	
	6	10 ⁻⁶	10 ⁻⁸	
	7	10 ⁻⁷	10 ⁻⁷	
	8	10^{-8}	10 ⁻⁶	
$K_{eq} (55.5 \text{ M}) = [H^{\circ}] [OH^{\circ}]$	9	10 ⁻⁹	10 ⁻⁵	
	10	10^{-10}	10 ⁻⁴	
· · · · · · · · · · · · · · · · · · ·	2 11	10^{-11}	10^{-3}	
$K_{W} = [H^{\circ}][OH^{\circ}] = 1.0 \times 10 M^{\circ}$	12	10 ⁻¹²	10^{-2}	
	13	10 ⁻¹³	10^{-1}	

Examples

• Find the K_a of a 0.04 M weak acid HA whose [H⁺] is 1 x 10⁻⁴?

$$HA \stackrel{\longrightarrow}{\longleftarrow} H^+ + A^-$$

• $K_a = [A^-] [H^+] / [HA] = [H^+]^2 / [HA] = 10^{-4} \times 10^{-4} / 0.04 = 2.5 \times 10^{-7}$

• What is the [H+] of a 0.05 M Ba(OH)₂?

Ba(OH)₂
$$\stackrel{>}{<}$$
 Ba + 2OH-

• [OH-] = 2x 0.05 = 0.10 M = 1 x 10⁻¹

• [H+] = 1x 10⁻¹³

The pH of Various Common Fluids		
Fluid	pH	
Household lye	13.6	
Bleach	12.6	
Household ammonia	11.4	
Milk of magnesia	10.3	
Baking soda	8.4	
Seawater	8.0	
Pancreatic fluid	7.8-8.0	
Blood plasma	7.4	
Intracellular fluids		
Liver	6.9	
Muscle	6.1	
Saliva	6.6	
Urine	5-8	
Boric acid	5.0	
Beer	4.5	
Orange juice	4.3	
Grapefruit juice	3.2	
Vinegar	2.9	
Soft drinks	2.8	
Lemon juice	2.3	
Gastric juice	1.2 - 3.0	
Battery acid	0.35	

Exercises

- What is the pH of
 - 0.01 M HCl?
 - 0.01 M H₂SO₄?
 - 0.01 M NaOH?
 - 1 x 10⁻¹¹ M HCl? (this is a tricky one)
 - 0.1 M of acetic acid (CH₃COOH)? Remember Ka

■ 1.8 x 10⁻⁵

Henderson-Hasselbalch Equation

• HA
$$\longrightarrow$$
 H⁺ + A⁻
 $\mathbf{K}_{\mathbf{a}} = \frac{[\mathbf{H}^{+}][\mathbf{A}^{-}]}{[\mathbf{H}\mathbf{A}]}$
 $[\mathbf{H}^{+}] = \frac{\mathbf{K}_{\mathbf{a}}[\mathbf{H}\mathbf{A}]}{[\mathbf{A}^{-}]}$

$$\log[H^+] = \log K_a + \log \frac{[HA]}{[A^-]}$$

 $pH = pK_a + \log \frac{[A^-]}{[HA]}$

 $pH = pK_a - \log \frac{[HA]}{[A^-]}$ or

A comparison of the change in pH (water vs. acetic acid)

0.010 mol of base are added to 1.0 L of pure water and to 1.0 L of a 0.10 M acetic acid 0.10 M acetate ion buffer, the pH of the water varies between 12 and 2, while the pH of the buffer varies only between 4.85 and 4.68.

What is a buffer?

- Buffers are solutions that resist changes in pH by changing reaction equilibrium
- They are composed of mixtures of a weak acid and a roughly equal concentration of its conjugate base

Acid	Conjugate base
CH ₃ COOH	CH ₃ COONa (NaCH ₃ COO)
H ₃ PO ₄	NaH ₂ PO ₄
H_2PO_4 - (or Na H_2PO_4)	Na ₂ HPO ₄
H ₂ CO ₃	NaHCO ₃

Titration curve of buffer

How do we make/choose a buffer?

- A buffer is made by combining weak acid/base and its salt.
- The ability of a buffer to function depends on:
 - Buffer concentration
 - Buffering capacity (pKa of the buffer and the desired pH)

Excercises

- A solution of 0.1 M acetic acid and 0.2 M acetate ion. The pKa of acetic acid is 4.8. Hence, what is the pH of the solution?
- Predict then calculate the pH of a buffer containing
 - 0.1M HF and 0.12M NaF? (Ka = 3.5×10^{-4})
 - 0.1M HF and 0.1M NaF, when 0.02M HCl is added to the solution?
- What is the pH of a lactate buffer that contain 75% lactic acid and 25% lactate? (pKa = 3.86)

Excercises

- A solution was prepared by dissolving 0.02 moles of acetic acid (HOAc; pKa = 4.8) in water to give 1 liter of solution. What is the pH?
- To this solution was then added 0.008 moles of concentrated sodium hydroxide (NaOH). What is the new pH? (In this problem, you may ignore changes in volume due to the addition of NaOH).

Buffers in human body (biological buffers)

- Carbonic acid-bicarbonate system (blood)
- Dihydrogen phosphate-monohydrogen phosphate system (intracellular)
- ATP, glucose-6-phosphate, bisphsphoglycerate (RBC)
- Proteins (extra- and intracellular) (why?)
 - Hemoglobin in blood
 - Other proteins in blood and cells

Bicarbonate buffer

Bicarbonate buffer and interaction with other systems

Blood (instantaneously)

$CO_2 + H_2O \Rightarrow H_2CO_3 \Rightarrow H^+ + HCO_3^-$

Lungs (within minutes) Excretion via kidneys (hours to days)

Titration curve of bicarbonate buffer

Why is this buffer effective?

- Relatively high concentration in the ECF (24mmol/L)
- Components are effectively under physiological control
 - CO2 by lungs
 - Bicarbonate by kidneys
- It is an open system (continuously interacts with its environment)

Acidosis and alkalosis

- Can be either metabolic or respiratory
- Acidosis (pH< 7.35)
 - Metabolic: production of ketone bodies (starvation)
 - Respiratory: pulmonary (asthma; emphysema)
- Alkalosis (pH > 7.45)
 - Metabolic: administration of salts
 - Respiratory: hyperventilation (anxiety)

Respiratory conditions

$\frac{\text{Respiratory Acidosis}}{\text{H}^{+} + \text{HCO}_{3}^{-} \leftrightarrow \text{H}_{2}\text{CO}_{3} \leftrightarrow \text{CO}_{2}^{-} + \text{H}_{2}\text{O}_{3}}$

Respiratory Alkalosis

$H^+ + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow co_2 + H_2O$

Metabolic conditions

Metabolic Acidosis

+ HCO₃ \leftrightarrow H CO₄ \leftrightarrow CO₂ + H O₂ $_{3}$ $_{2}$ $_{3}$ \leftrightarrow CO₂ + H O₂

Metabolic Alkalosis

 $H^{+} + HCO_{3}^{-} \leftrightarrow H_{2}CO_{3} \leftrightarrow CO_{2} + H_{2}O$

Causes of respiratory acid-base disorders

Choking

Bronchopneumonia

COAD

Hysterical overbreathing

Mechanical over-ventilation

Raised intracranial pressure

Causes of metabolic acid-base disorders

Impaired H + excretion Loss of H+ in vomit Increased H+ production **Alkali ingestion** or ingestion Loss of HCO₃⁻ Potassium deficiency

Compensation $H^+(aq) + HCO_3^-(aq) \longrightarrow H_2CO_3(aq) \longrightarrow H_2O_{(1)} + CO_2(q)$

- If metabolic: hyperventilation or hypoventilation
- If respiratory: renal mechanisms
- May be complete or partial

Ν	0	rm	al	val	ues

	ABG	VBG	CBG
рН	7.35-7.45	7.25-7.35	7.35 - 7.45
PCO2 (mmHg)	35-45	41-51	35 - 48
PO2 (mmHg)	80-100	35-40	80-100
HCO3 (mmol/L)	22-26	22-26	22 – 27

Acid-Base Disorder Respiratory acidosis Respiratory alkalosis Metabolic acidosis Metabolic alkalosis

Primary Change $pCO_2 up$ $pCO_2 down$ $HCO_3 down$ $HCO_3 up$ Compensatory Change $HCO_3 up$ $HCO_3 down$ $PCO_2 down$ $PCO_2 up$

FULLY COMPENSATED

H₂CO_{3 (aq)} H+ (aq) + HCO3 (aq) $H_2O_{(1)} + CO_2(g)$

pH

 pCO_2

HCO₃-

Resp. acidosis Normal but<7.40

Resp. alkalosis Normal but>7.40

Met. Acidosis Normal but<7.40

Met. alkalosis Normal but>7.40

Partially compensated

Disorder	Characteristics	Selected situations
Respiratory acidosis with metabolic acidosis	↓in pH ↓ in HCO₃ ↑ in PaCO₂	Cardiac arrestIntoxicationsMulti-organ failure
Respiratory alkalosis with metabolic alkalosis	↑in pH ↑ in HCO₃- ↓ in PaCO₂	 Cirrhosis with diuretics Pregnancy with vomiting Over ventilation of COPD
Respiratory acidosis with metabolic alkalosis	pH in normal range ↑ in PaCO ₂ , ↑ in HCO ₃ -	 COPD with diuretics, vomiting, NG suction Severe hypokalemia
Respiratory alkalosis with metabolic acidosis	pH in normal range ↓ in PaCO ₂ ↓ in HCO ₃	 Sepsis Salicylate toxicity Renal failure with CHF or pneumonia Advanced liver disease
Metabolic acidosis with metabolic alkalosis	pH in normal range HCO3- normal	 Uremia or ketoacidosis with vomiting, NG suction, diuretics, etc.