POUPEPIDES AND PROTEINS

Prof. Nafez Abu Tarboush

PROTEINS

Native conformation

LEVELS OF PROTEIN STRUCTURE

- **Primary structure**: the number, type, and sequence of amino acid residues
- Secondary structure: the localized organization of parts of a polypeptide chain
- **Tertiary structure**: the three-dimensional structure and/or arrangement of all the amino acids residues of a polypeptide chain
- Some proteins are made of multiple polypeptides crosslinked (connected) with each other. These are known as multimeric proteins. **Quaternary structure** describes the number and relative positions of the subunits in a multimeric protein

WHAT IS PRIMARY STRUCTURE

• The primary structure of a protein determines the other levels of structure

- $\triangleright \alpha$ -Globin (blue)
- > β-Globin (violet)
- Myoglobin (green)

Zehrafish Gata2h

Mouse GATA2 Zebrafish Gata2a

ECVNCGATATPLWRRDGTGHYLCNACGLYHKMNGONRPLIKPKRRLSAARRAGTCCANCO 353 ECVNCGATATPLWRRDGTGHYLCNACGLYHKMNGONRPLIKPKRRLSAARRAGTCCANCO ECVNCGATSTPLWRRDGTGHYLCNACGLYHKMNGQNRPLIKPKRRLSAARRAGTCCANCO

353 329

ECVNCGATSTPLWRRDGTGHYLCNACGLYHKMNGONRPLIRPKRRLSASRRAGTCCANCO

SICKLE CELL HEWOGLOBIN (HBS)

- It is caused by a change of amino acids in the 6th position of β globin (Glu to Val)
- The mutation results in: 1) arrays of aggregates of hemoglobin molecules, 2) deformation of the red blood cell, and 3) clotting in blood vessels and tissues

Normal

red blood

Normal Hemoglobin

WHAT IS IT? HOW IS IT CAUSED?

- The two bonds within each amino acid residue freely rotate
 - the bond between the α -carbon and the amino nitrogen
 - the bond between the α -carbon and the carboxyl carbon
- A hydrogen-bonded, local arrangement of the backbone of a polypeptide chain
- Polypeptide chains can fold into regular structures such as:
 - Alpha helix
 - Beta-pleated sheet
 - Turns
 - Loops

THE Q-HELIX

- 3.6 amino acids per turn
- The pitch of the helix (the linear distance between corresponding points on successive turns) is 5.4 Å
- It is very stable!
- Avoiding steric hindrance

AMINO ACIDS NOT FOUND IN α -HELIX

- Glycine: too small
- Proline
 - No rotation around N-Cα bond
 - No hydrogen bonding of α -amino group
- Close proximity of a pair of charged amino acids with similar charges
- Amino acids with branches at the β -carbon atom (valine, threonine, and isoleucine)

B-PLEATED SHEET (B-SHEET)

- They are composed of two or more straight chains (β strands) that are hydrogen bonded side by side (typically 4 or 5)
- Optimal hydrogen bonding occurs when the sheet is bent (pleated) to form β -pleated sheets

β strand

MORE ON B-SHEETS

- β sheets can form between many strands, typically 4 or 5 but as many as 10 or more
- Such β sheets can be purely antiparallel, purely parallel, or mixed

Parallel

Antiparallel

EFFECT OF AMINO ACIDS

- Valine, threonine and Isoleucine with branched R groups at β -carbon and the large aromatic amino acids (phenylalanine, tryptophan, and tyrosine) tend to be present in β -sheets.
- Proline and glycine tend to disrupt β strands

B-TURNS

- Turns are compact, U-shaped secondary structures
- They are also known as β turn or hairpin bend
- What are they used for? How are they stabilized?
- Glycine and proline are commonly present in turns
- Why?

LOOPS AND COILS

- Loops are a diverse class of secondary structures in proteins with irregular geometry
- They connect the main secondary structures.
- They are found on surface of molecule (and contain polar residues) and provide flexibility to proteins.
- Amino acids in loops are often not conserved.

SUPER-SECONDARY STRUCTURES

- They are regions in proteins that contain an ordered organization of secondary structures.
- Examples:
 - Motifs
 - Domains

A MOTIF (A MODULE)

- A motif is made of multiple, repetitive or consecutive (connected) secondary structures, that can be small or large.
- They usually constitute a small portion of a protein (typically less than 20 amino acids).
- In general, motifs may provide us with information about the folding of proteins, but not the biological function of the protein.

EXAMPLES OF MOTIFS

Helix-loop-helix: Two α-helices connected by a loop. It is found in Ca-binding proteins.

Helix-turn-helix: Two α helices joined by a short strand of amino acids. It is found in DNA-binding proteins.

Zinc finger: Two beta strands with an alpha helix end folded over to bind a zinc ion. Important in DNA binding proteins. Beta hairpin: Two antiparallel beta strands connected by a turn.

WHAT IS TERTIARY STRUCTURE?

- The overall conformation of a polypeptide chain
- The three-dimensional arrangement of all the amino acids residues

 The spatial arrangement of amino acid residues that are far apart in the sequence

HOW TO LOOK AT PROTEINS...

Space filling structure

Trace structure

Ribbon structure

Protein surface map

Cylinder structure

SHAPE-DETERMINING FORCES

NON-COVALENT INTERACTIONS

- Hydrogen bonds: 1. within and between polypeptide chains; 2. with the aqueous medium
- Charge-charge interactions (salt bridges, ionic): oppositely charged R-groups
- Charge-dipole interactions: charged R groups with the partial charges of water

The same charged group can form either hydrogen bonding or electrostatic interactions

HYDROPHOBIC INTERACTIONS

 A system is more thermodynamically (energetically) stable when hydrophobic groups are clustered together rather than extended into the aqueous surroundings.

CAN POLAR AWING ACIDS BE FOUND IN THE INTERIOR?..YES

 Polar amino acids can be found in the interior of proteins

- In this case, they form hydrogen bonds to other amino acids or to the polypeptide backbone
- They play important roles in the function of the protein

STABILIZING FACTORS

- There are two forces that do not determine the 3D-structure of proteins, but stabilize these structures:
 - Disulfide bonds
 - Metal ions
 - Covalent
 - Salt bridges

Figure 2-21

Biochemistry, Sixth Edition

2007 W.H. Freeman and Company

A HYPOTHETICAL LOOK AT PROTEIN FOLDING

PROTEIN ARE NOT STATIC

WHAT IS IT?

- Proteins are composed of more than one polypeptide chain.
 - They are oligomeric proteins (oligo = a few or small or short; mer
 = part or unit)
- The spatial arrangement of subunits and the nature of their interactions.
- Proteins made of
 - One subunit = monomer
 - Two subunits: dimer
 - The simplest: a homodimer
 - Three subunits: trimer
 - Four subunit: tetramer
 - ...etc

- Each polypeptide chain is called a subunit
- Oligomeric proteins are made of multiple polypeptides that are
 - identical → homo-oligomers (homo = same), or
 - different → hetero-oligomers (hetero = different)

HOW ARE THE SUBUNITS CONNECTED?

 Sometimes subunits are disulfide-bonded together, other times, noncovalent bonds stabilize interactions between subunits

PROTEIN HYDROLYSIS

DENATURATION

- Solubility
- Heat
- Mechanical
- Extremes of pH
- Organic compounds: acetone, ethanol, bacterial proteins
- Detergents (Triton X-100 (nonionic, uncharged) and sodium dodecyl sulfate (SDS, anionic, charged)) disrupt the hydrophobic forces.

Heat

- SDS also disrupt electrostatic interactions.
- Urea and guanidine hydrochloride disrupt hydrogen bonding and hydrophobic interactions.
- Reducing agents such as β -mercaptoethanol (β ME) and dithiothreitol (DTT). Both reduce disulfide bonds

RENATURATION

- Renaturation is the process in which the native conformation of a protein is re-acquired
- Most denaturation is irreversible
- Renaturation can occur quickly and spontaneously and disulfide bonds are formed correctly
- If a protein is unfolded, it can refold to its correct structure placing the S-S bonds in the right orientation (adjacent to each other prior to formation), then the correct S-S bonds are reformed.
- This is particularly true for small proteins

FACTORS THAT DETERMINE PROTEIN STRUCTURE

- The least amount of energy needed to stabilize the protein. This is determined by:
 - The amino acid sequence (the **primary structure**), mainly the internal residues.
 - The proper angles between the amino acids
 - The different sets of weak noncovalent bonds that form between, mainly, the R groups
 - Non-protein molecules

PROBLEM SOLVERS: **CHAPERONES**

- Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.
- These proteins bind to polypeptide chains and help them fold with the most energetically favorable folding pathway.
- Chaperones also prevent the hydrophobic regions in newly synthesized protein chains from associating with each other to form protein aggregates.

Many diseases are the result of defects in protein folding

THE PROBLEM OF MISFOLDING

 When proteins do not fold correctly, their internal hydrophobic regions become exposed and interact with other hydrophobic regions on other molecules, and form aggregates.

OUTCOME OF PROTEIN MISFOLDING

- Partly folded or misfolded polypeptides or fragments may sometimes associate with similar chains to form aggregates.
- Aggregates vary in size from soluble dimers and trimers up to insoluble fibrillar structures (amyloid).
- Both soluble and insoluble aggregates can be toxic to cells.

PRION DISEASE

- Striking examples of protein folding-related diseases are prion diseases, such as Creutzfeldt-Jacob disease (in humans), and mad cow disease (in cows), and scrapie (in sheep)
- Pathological conditions can result if a brain protein known to as prion protein (PrP) is misfolded into an incorrect form called PrPsc (Met¹²⁹)
- PrP_C has a lot of α -helical conformation, but PrPsc has more β strands forming aggregates

ALZHEIMER'S DISEASE

- Not transmissible between individuals
- Extracellular plaques of protein aggregates of a protein called tau and another known as amyloid peptides (Aβ) damage neurons.

FORMATION OF PLAQUES

HOLO- AND APO-PROTEINS

- Proteins can be linked to non-protein groups and are known as conjugated proteins
- When a protein is conjugated to a non-protein group <u>covalently</u>, the non-protein group is known as a **prosthetic group** and the protein known as a **holoprotein**
- If the non-protein component is removed, the protein is known as an apoprotein

CONJUGATED...

- Lipoproeins: Proteins associated with lipids
- Phosphoproteins: proteins that are phosphorylated
- Hemoproteins: proteins with heme
- Nucleoproteins: proteins with a nucleic acid
- Glycoproteins: proteins with carbohydrate groups

CLASSES OF GLYCOPROTEINS

- N-linked sugars
 - The amide nitrogen of the R-group of asparagine
- O-linked sugars
 - The hydroxyl groups of either serine or threonine
 - Occasionally to hydroxylysine

Glycoprotein

