PLASMA PROTEINS

BLOOD: PLASMA VS. HEMATOCRIT

 Hematocrit or packed cell volume (Adult male: 47 %, Adult females: 42

%)

BLOOD: WHAT IS INSIDE PLASMA

PLASMA

- Liquid medium where cells are suspended
- Composition: Water (92%) Solids (8%)
 - · Organic:
 - · Plasma proteins: Albumin, Globulins & Fibrinogen
 - Non-protein nitrogenous compounds: urea, free amino acids, uric acid, creatinine, creatine & NH_3
 - Lipids: Cholesterol, TG, phospholipids, free fatty acids
 - Carbohydrates: Glucose, fructose, pentose
 - Other substances as: Ketone bodies, bile pigments, vitamins, enzymes & hormones
 - Inorganic: Na⁺,K⁺,Ca²⁺,Mg²⁺,Cl⁻,HCO₃⁻,HPO₄²⁻, SO₄²⁻

PLASMA PROTEINS ARE A MIXTURE

- More than 500 plasma proteins have been identified
- Normal range 6-8 g/dl (the major of the solids)
- Simple & conjugated proteins (glycoproteins & lipoproteins)

SEPARATION OF PLASMA PROTEINS

- Salting-out (ammonium sulfate): fibrinogen, albumin, and globulins
- Electrophoresis (most common): serum (defebrinated plasma), five bands (albumin, $\alpha 1$, $\alpha 2$, β , and γ)

NORMAL VALUES:

Name	Absolute values (g/l)	Relative values (%)
Albumins	35 – 55	50 - 60
α1-globulins	2 - 4	4.2 - 7.2
α2-globulins	5 – 9	6.8 - 12
β-globulins	6 - 11	9.3 - 15
γ-globulins	7 – 17	13 - 23

ELECTROPHORESIS OF PLASMA PROTEINS

- Albumin is smaller than globulin, and slightly negatively charged
- Globulins (3 bands):
- α band:
 - α l region consists mostly of α l-antitrypsin
 - $\alpha 2$ region is mostly haptoglobin, $\alpha 2$ -macroglobulin, & ceruloplasmin
- β band: transferrin, LDL, complement system proteins
- γ band: the immuno-globulins

SYNTHESIS OF PLASMA PROTEINS

- Mostly liver (albumin, globulins), γ -globulins (plasma cells; lymph nodes, bone marrow, spleen)
- Most plasma proteins are synthesized as preproproteins (signal peptide)
- Various posttranslational modifications (proteolysis, glycosylation, phosphorylation, etc.)
- Transit times (30 min to several hours)
- Most plasma proteins are Glycoproteins (N- or O-linked). Albumin is the major exception

POLYMORPHISMS AND HALF-LIVES

Polymorphisms

- A mendelian or monogenic trait
- Exists in population in at least two phenotypes, neither is rare
- The ABO blood groups are the best-known examples
- $\alpha 1$ -antitrypsin, haptoglobin, transferrin, ceruloplasmin, and immunoglobulins
- Electrophoresis or isoelectric focusing

Half-Lives

- Determined through isotope labeling studies (I¹³¹)
- Albumin & haptoglobin (20 & 5 days)
- Diseases can affect half-lives (ex. Crohn's disease), albumin may be reduced (1 day)
- Protein-losing gastro-enteropathy

GENERAL AND SPECIFIC FUNCTIONS OF PLASMA PROTEINS

- A nutritive role
- Maintenance of blood pH (amphoteric property)
- Contributes to blood viscosity
- Maintenance of blood osmotic pressure

- Enzymes (e.g. rennin, coagulation factors, lipases)
- Humoral immunity (immunoglobulins)
- Blood coagulation factors
- Hormonal (Erythropoietin)
- Transport proteins (Transferrin, Thyroxin binding globulin, Apolipoprotein)

STARLING FORCES

 Edema can be a result of protein deficiency

ACUTE-PHASE PROTEINS

- Levels increase (up to 1000 folds), acute inflammation, tissue damage, chronic inflammation & cancer. C-reactive protein (CRP), $\alpha 1$ -antitrypsin, haptoglobin, & fibrinogen
- Interleukin-l (IL-l), main stimulator (gene transcription)
- Nuclear factor kappa-B (NFkB): Exist in an inactive form in cytosol, activated and translocated to nucleus (interleukin-1)
- Negative acute phase proteins: prealbumin, albumin, transferrin

ALBUMIN

- The Major Protein in Human Plasma, 69 kDa, half-life (20 days)
- The main contributor to the osmotic pressure (75-80%)
- Liver: 12 g/day (25% of total protein synthesis) (liver function test)
- Synthesized as a preproprotein
- One polypeptide chain, 585 amino acids, 17 disulfide bonds
- Proteases subdivide albumin into 3 domains
- Ellipsoidal shape (viscosity) vs. fibrinogen
- Anionic at pH 7.4 with 20 negative charges

ALBUMIN BINDING CAPACITY

- binds various ligands:
 - Free fatty acids (FFA)
 - Certain steroid hormones
 - Bilirubin
 - Plasma tryptophan
 - Metals: Calcium, copper and heavy metals
 - Drugs: sulfonamides, penicillin G, dicumarol, aspirin (drug-drug interaction)

ANALBUWINEWIA

- There are human cases of analbuminemia (rare)
- Autosomal recessive inheritance
- One of the causes: a mutation that affects splicing
- Patients show moderate edema!!!

OTHER CLINICAL DISORDERS

- Hypoalbiminemia: edema seen in conditions where albumin level in blood is less than 2 g/dl
 - Malnutrition (generalised edema)
 - Nephrotic syndrome
 - Cirrhosis (mainly ascites)
 - Gastrointestinal loss of proteins

Hyperalbuminemia: dehydration (relative increase)

OTHER CLINICAL DISORDERS

- Drug-drug interaction:
- Bilirubin toxicity (aspirin is a competitive ligand of albumin): kernicterus and mental retardation, Reye's syndrome
- Phenytoin-dicoumarol interaction

PREALBUMIN (TRANSTHYRETIN)

- Migrates ahead of albumin, 62 kDa
- It is a small glycoprotein (rich in tryptophan, 0.5% carbohydrates)
- Blood level is low (0.25 g/L)
- It has short half-life (\approx 2 days): sensitive indicator of disease or poor protein nutrition
- Main function:
- T4 (Thyroxine) and T3 carrier

GLOBULINS

√ αl-globulins	\checkmark α 2- globulins	γ β- globulins	√ γ-globulins
 αl-antitrypsin αl-fetoprotein αl- acid glycoprotein Retinol binding protein 	 ✓ Ceruloplasmin ✓ Haptoglobin ✓ α2-macroglobulin 	 ✓ CRP ✓ Transferrin ✓ Hemopexin ✓ β2-microglobulin 	✓ IGG ✓ IGA ✓ IGM ✓ IGD ✓ IGE

α1-ANTITRYPSIN

- α1-Antiproteinase (52 kDa)
- Neutralizes trypsin & trypsin-like enzymes (elastase)
- 90% of $\alpha 1$ globulin band
- Many polymorphic forms (at least 75)
- Alleles Pi^M, Pi^S, Pi^Z, Pi^F (MM is the most common)
- Deficiency (genetic): emphysema (ZZ, SZ). MS, MZ usually not affected
- Increased level of $\alpha 1$ antitrypsin (acute phase response)

Active elastase + α_1 -AT \rightarrow Inactive elastase: α_1 -AT complex \rightarrow No proteolysis of lung \rightarrow No tissue damage

Active elastase + \downarrow or no α_1 -AT \rightarrow Active elastase \rightarrow Proteolysis of lung \rightarrow Tissue damage

SMOKING & $\alpha 1$ - ANTITRYPSIN DEFICIENCY

- Chronic inflammation (neutrophil elastase)
- Oxidation of Met³⁵⁸
- Devastating in patients with PiZZ

methionine-sulfoxide

LIVER DISEASE & $\alpha 1$ - ANTITRYPSIN DEFICIENCY

α1-FETOPROTEIN

- Synthesized primarily by the fetal yolk sac and then by liver parenchymal cells
- Very low levels in adult
- Functions of αl-fetoprotein:
- Protect the fetus from immunolytic attacks
- Modulates the growth of the fetus
- Transport compounds e.g. steroids
- Low level: increased risk of Down's syndrome
- Level of α 1-fetoprotein increases in:
- Fetus and pregnant women Normally
- Hepatoma & acute hepatitis

HAPTOGLOBIN (HP)

- It is an acute phase reactant protein
- α2 glycoprotein (90kDa)
- A tetramer $(2\alpha, 2\beta)$
- 3 phenotypes:
 - Hp 1-1 \rightarrow α 1, α 1 + 2 β
 - Hp 2-1 \rightarrow α 1, α 2 + 2 β
 - Hp 2-2 $\rightarrow \alpha 2$, $\alpha 2 + 2\beta$
- Binds the free hemoglobin (65 kDa); prevents loss of hemoglobin & its iron into urine
- Hb-Hp complex has shorter half-life (90 min) than that of Hp (5 days)
- Decreased level in hemolytic anemia

CERULOPLASMIN

- A copper containing glycoprotein (160 kDa)
- It contains 6 atoms of copper
- Metallothioneins (regulate tissue level of Cu)
- Regulates copper level: contains 90% of serum Cu
- A ferroxidase: oxidizes ferrous to ferric (transferrin)
- Albumin (10%) is more important in transport
- Decreased levels in liver disease (ex. Wilson's, autosomal recessive genetic disease)

Cu-containing enzymes

- Amine oxidase
- Copper-dependent superoxide dismutase
- Cytochrome oxidase
- Tyrosinase

C-REACTIVE PROTEIN (CRP)

- A homo-pentameric acute-phase inflammatory protein
- Able to bind to a polysaccharide (fraction C) in the cell wall of pneumococci
- Help in the defense against bacteria and foreign substances
- Undetectable in healthy individuals, detectable in many inflammatory diseases (Acute rheumatic fever, bacterial infection, gout, etc.) & Tissue damage
- Its level reaches a peak after 48 hours of incident (monitoring marker)

ELECTROPHORESIS ASPECTS IN SEVERAL TYPES OF DYSPROTEINEMIA

DISEASES

DISEASES

