## MUCLEIC ACIDS

Prof. Nafez Abu Tarboush



#### TERMS

- DNA and RNA: nucleic acids; polymers of nucleotides
- Gene: continuous sequence of nucleotides that is transcribed (codes for or is used to make RNA)
- A nucleosome: a short sequence of DNA wrapped around proteins called histones
- Chromatin is a stretch of DNA and histones
- Chromosome is a whole molecule of DNA, which can consist of one chromatid or two identical chromatids, called sister chromatids

#### **Nucleosome**



Sister chromatids



#### NUCLEOSOMES

- DNA wrapped around a core particle, linker DNA, and histone H1.
- The histone core particle is an octamer (two molecules of histones H2A, H2B, H3, and H4) and the DNA wrapped around it
- A linker DNA connects two nucleosome core particles
- Histone H1 is bound to the octamer and wrapped DNA (a chromatosome)
- Histones are positively charged facilitating DNA interaction and charge neutralization





Nucleosome

#### CHROMOSOME VS. CHROMATIN

- In non-dividing cells, the chromatin of chromosomes is not condensed (uncoiled) and cannot be distinguished from each other before cell division (like a spaghetti plate).
- At cell division, chromosomes become condensed (coiled) DNA molecules that can be distinguished from other chromosomes.



#### NUCLEOTIDES IN DNA AND RNA

#### The Structure of a Nucleotide



Nucleic acids are polymers of nucleotides.

- All nucleotides have a common structure:
  - 1. a phosphate group linked by a phosphoester bond to a pentose.
  - 2. The pentose is linked to a nitrogenous base via a glycosidic bond.
  - 3. A nucleotide can have one, two, or three phosphate groups linked to each.





#### NITROGENOUS BASES

- DNA and RNA consist of only four different nucleotides of two classes: purines and pyrimidines.
- Purines are adenine and guanine, and pyrimidines are cytosine, thymine (DNA), and uracil (RNA).
- The bases are abbreviated A, G, C, T, and U, respectively





#### HOW ARE BASES CONNECTED TO RIBOSE?

• In nucleotides, the 1 carbon atom of the sugar (ribose or deoxyribose) is attached to the nitrogen.





#### NUCLEOTIDES ARE ACIDIC

 Due to the presence of phosphate, which dissociates protons at physiological pH inside cells, freeing hydrogen ions and leaving the phosphate negatively charged



#### NUCLEOTIDES VS. NUCLEOSIDES

- Nucleosides are combinations of a base and a sugar without a phosphate
- Nucleotides are nucleosides that have one, two, or three phosphate groups esterified at the 5' hydroxyl
- Nucleoside monophosphates have a single esterified phosphate
  - diphosphates contain a two-phosphate group
  - triphosphates have three phosphates



#### NAMING OF MUCLEOTIDES





| d | ler | IOS | sin | e |  |
|---|-----|-----|-----|---|--|
|   |     |     |     |   |  |

| 2 | -aeoxy | tny | mı | air | 1 |
|---|--------|-----|----|-----|---|
|   |        |     |    |     |   |

| BASES        | NUCLEOSIDES          | NUCLEOTIDES*                           |
|--------------|----------------------|----------------------------------------|
| DNA          |                      |                                        |
|              | Deoxyribonucleosides | Deoxyribonucleotides                   |
| Adenine (A)  | Deoxyadenosine       | Deoxyadenosine 5'-monophosphate (dAMP) |
| Guanine (G)  | Deoxyguanosine       | Deoxyguanosine 5'-monophosphate (dGMP) |
| Cytosine (C) | Deoxycytidine        | Deoxycytidine 5'-monophosphate (dCMP)  |
| Thymine (T)  | Deoxythymidine       | Deoxythymidine 5'-monophosphate (dTMP) |
| RNA          |                      |                                        |
| IIIA         | Ribonucleosides      | Ribonucleotides                        |
| Adenine (A)  | Adenosine            | Adenosine 5'-monophosphate (AMP)       |
| Guanine (G)  | Guanosine            | Guanosine 5'-monophosphate (GMP)       |
| Cytosine (C) | Cytidine             | Cytidine 5'-monophosphate (CMP)        |
| Uracil (U)   | Uridine              | Uridine 5'-monophosphate (UMP)         |
|              |                      |                                        |

1. Look for the phosphate

1.No: nucleoside

2.Yes: nucleotide

2.Look at C2 of the sugar

1.H: deoxyribose

2.OH: Ribose

3.Look at the base

1. Single ring (pyrimidine): C, T, or U

2.Double ring (purine): A or G



#### NUCLEIC ACID POLYMER

- Hydroxyl group attached to the 3' carbon of a sugar of one nucleotide forms a bond to the phosphate of another nucleotide.
- A single nucleic acid strand is a phosphate-pentose polymer (a polyester) with purine and pyrimidine bases as side groups.





#### DIRECTIONALITY

- A nucleic acid strand has an end-to-end chemical orientation:
  - The 5' end has a free phosphate group on the 5' carbon
  - The 3' end has a free hydroxyl group on the 3' carbon
  - This directionality has made polynucleotide sequences written and read in the  $5' \rightarrow 3'$  direction (from left to right).
  - Example: the sequence AUG is assumed to be (5')AUG(3').

Phosphate Phosphate Sugar-Phosphate

5' End

3' End

#### DNA STRUCTURE

- Two associated polynucleotide strands that wind together (double helix)
- The sugar-phosphate groups are on the outside
- The bases project into the interior
- The sugar-phosphate groups are termed backbone
- The orientation of the two strands is antiparallel



#### BASE PAIRING

- In DNA, the larger purines (A or G) must pair with a smaller pyrimidines (C or T).
- A always hydrogen bonds with T and G with C, forming A·T and G·C base pairs.

A is paired with T through two hydrogen bonds; G is paired with C through three hydrogen bonds.

#### Chargaff's rules

Pyrimidines (T + C) always equals purines (A + G). T always equals A. C always equals G. A + T is not necessarily equal to G + C.

### DNA GROOVES







#### DNA-STABILIZING FORCES

- Hydrogen bonds
- Hydrophobic stacking: via hydrophobic interactions and van der Waals interactions
- Helical twists: Each base pair is rotated with respect to the preceding one for maximal base pairing
- Propeller twists: The bases twist for optimal base stacking
- DNA-binding proteins (e.g., histones)
- Ions such as Na<sup>+</sup> or Mg<sup>2+</sup> (and histones) reduce the repulsion created by the negatively-charged phosphates of the DNA



# THE GENOME OF PROKARYOTES VERSUS EUKARYOTES

- Genome: the total genetic material of a living being (bacteria vs. human), a species (monkey vs. human), an individual (me vs. you), or a cell (brain vs. liver), etc.
- Prokaryote: an organism that lacks a nucleus or other organelles.
- Eukaryote: an organism that has a true (clearly defined) nucleus.



#### BACTERIAL CHROMOSOME AND PLASMIDS

- The genetic materials of bacteria are of 2. Plasmids: 2 types:
- 1. The chromosome: One circular chromosome of double-stranded DNA.
  - E.g. *Escherichia coli* contains > 4 × 10<sup>6</sup> bp (length of 2 mm) carrying 4200 genes.



- - 1) Small, circular DNA molecules
  - 2) Can replicate autonomously and independently
  - 3) Not infectious like viruses
  - 4) Can carry genes, some of which confer resistance to antibiotics
  - 5) Exist as different types but one plasmid type per cell
  - 6) Can exist as multiple copies
  - 7) Can transfer among bacterial cells

#### THE HUWAN GENOME

• The genetic material of humans is of 2 types:

• The nuclear genome: organized as linear chromosomes that consist of ~3x10<sup>9</sup> nucleotides in germline cells (sperm and egg) with a length of 1m per cell and that carry ~20000 genes

■ The mitochondrial genome, which constitutes less than 0.1% of the total DNA in a cell (~16500 bp) and encodes 37 genes for proteins involved in the respiratory chain reaction







#### MORE EUKARYOTIC TERMS

- Germline cells are haploid cells having one copy of every chromosome (either maternal or paternal)
- Somatic cells are diploid having two copies of every chromosome (maternal AND paternal) called homologous chromosomes
- Each chromosome can be made of one chromatid or sister chromatids





#### RNA STRUCTURE

Note: RNA is usually single-stranded and does not have a specific

structure



## TYPES OF RNA

| Symbol   | Non-Coding RNAs                         | Functions                                       |
|----------|-----------------------------------------|-------------------------------------------------|
| tRNA     | Transfer RNA                            | mRNA translation (structural)                   |
| rRNA     | Ribosomal RNA                           | mRNA translation (structural)                   |
| miRNA    | micro RNAs                              | Post-transcriptional transposon repression      |
| piRNA    | Piwi-interacting RNA                    | DNA methylation, transposon repression          |
| siRNA    | Short interfering RNA                   | RNA interference                                |
| snoRNA   | Small nucleolar RNAs                    | RNA modification, rRNA processing               |
| PROMPT's | Promoter upstream transcripts           | Associated with chromatin changes               |
| tiRNAs   | Transcripton initation RNAs             | Epigenetic regulation                           |
| lincRNAs | Long intergenic ncRNA                   | Epigenetic regulators of transcription          |
| rasiRNA  | Repeat associated small interfering RNA | Involved in the RNA interference (RNAi) pathway |
| eRNA     | Enhancer-like ncRNA                     | Transcriptional gene activation                 |
| T-UCRs   | Transcribed ultraconserved regions      | Regulation of miRNA and mRNA levels             |
| NATs     | Natural antisense transcripts           | mRNA stability                                  |
| PALRs    | Promoter-associated long RNAs           | Chromatin changes                               |
| tasiRNA  | Trans-acting siRNA                      | Represses gene expression                       |
| lncRNA   | Long noncoding RNA                      | Regulation of gene transcription                |
|          |                                         |                                                 |