

Form:	Form Number	EXC-01-02-02A				
	Jague Number and Date	2/3/24/2022/2963				
Course Synabus	Issue Number and Date	05/12/2022				
	Number and Date of Revision or Modification					
	Deans Council Approval Decision Number	265/2024/24/3/2				
	The Date of the Deans Council Approval Decision	2024/1/23				
	Number of Pages	06				

1.	Course Title	Introduction to Biochemistry and Molecular Biology						
2.	Course Number	0501113						
2	Credit Hours (Theory, Practical)	3 Theory						
5.	Contact Hours (Theory, Practical)	30 Lectures						
4.	Prerequisites/ Corequisites							
5.	Program Title	Doctor of Medicine						
6.	Program Code	05						
7.	School/ Center	School of Medicine						
8.	Department	Biochemistry and Physiology						
9.	Course Level	Bachelor						
10.	Year of Study and Semester (s)	First year/ Summer Semester						
11.	Program Degree	Bachelor						
12	Other Department(s) Involved in							
14.	Teaching the Course							
13.	Learning Language	English						
14.	Learning Types	■Face to face learning □Blended □Fully online						
15.	Online Platforms(s)	■ Moodle Microsoft Teams						
16	Issuing Date	December 2023						
17.	Revision Date	May 2025						

18. Course Coordinator:

Name: Prof. Nafez Abu Tarboush								
Contact hours: Sunday-Thursday 12:30 – 1:30 PM								
Office number: 116	Phone number: 065355000/23414							
Email: <u>natarboush@ju.edu.jo</u> , <u>natarboush@gmail.com</u>								

19. Other Instructors:

Name: Prof. Mamoun Ahram	Contact hours: Sunday-Thursday 1-2 PM
Office number: 148	Phone number: 065355000/23481
Email: m.ahram@ju.edu.jo	

20. Course Description:

A- Course Description:

This course covers the relationship between organic chemistry and biochemistry, structure of water and its properties including polarization and ionization, acids, bases, and buffers. It also covers the study of the structure and classification of carbohydrates, lipids, and amino acid, structure and characteristics of proteins, hemoglobin, fibrous proteins, enzymes including their general properties, classification, kinetics, mechanisms of inhibition and regulation. The course also covers the genetic code and its transcription, translation, protein synthesis, and mutations.

B- Aims:

The aim of this course is to provide students with a thorough understanding of the biochemical structures of components of the human body. The course covers water properties, macromolecules and their characteristics, the concept of structure-function relationship including enzymes.

21. Program Intended Learning Outcomes: (To be used in designing the matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program)

PLO's	*National Qualif	ications Framework I	Descriptors*
	Competency (C)	Skills (B)	Knowledge (A)
1.			X
2.		\boxtimes	
3.	\boxtimes		
4.			\boxtimes
5.		\boxtimes	
6.	\boxtimes		
7.			\boxtimes
8.	\boxtimes		

* Choose only one descriptor for each learning outcome of the program, whether knowledge, skill, or competency.

22. Course Intended Learning Outcomes: (Upon completion of the course, the student will be able to achieve the following intended learning outcomes)

Course		Competencies					
ILOs #	Remember	Understand	Apply	Analyse	Evaluate	Create	competencies
1.	\checkmark	\checkmark					List and recall
							properties of
							carbon, water,
							acids, bases,
							pH, and
							physiological
							buffers.
2.	\checkmark	\checkmark					Define
							carbohydrates,
							lipids and cell
							membranes,
							nucleic acids,
							and proteins.
							List their
							components,
							properties, and
							their simple
							and conjugated
2							structures.
3.	\checkmark	✓	\checkmark	\checkmark			Describe
							enzymes
							structure
							runction
							their elecced
							uleli classes,
							free and
							activation
							energies
							kinetics
							regulation
							isozymes
							coenzymes.
							and metals.

4.	\checkmark	\checkmark	\checkmark	\checkmark		Differentiate:
	,	·	,	·		the types and
						characteristics
						of non-covalent
						interactions;
						proteoglycans
						and
						glycoproteins;
						the basic
						mechanism and
						players of lipid
						transport in the
						blood; different
						structures of
						proteins and
						their structural
						significance;
						classes of
						cofactors.
5.			\checkmark	\checkmark	\checkmark	Apply; the
						molecular
						expressions of
						molarity,
						equivalence,
						pH, and pKa;
						Henderson-
						Hasselbalch
						equation;
						concepts of
						isomerism,
						isoelectric
						point,
						denaturation
						and
						renaturation.
						ionaturation,

							previous
							information to
							pathological
							defects in
							protein
							formation, and
							the uses of
							different
							biochemical
							techniques.
6.			\checkmark	\checkmark	\checkmark	\checkmark	Deduce an
							apply: the
							concept of Vo,
							Vmax, and
							KM, and their
							biological
							significance;
							Michaelis-
							Menten
							equation; the
							enzyme units
							(Vmax,
							turnover
							number,
							specificity
							constant, rate of
							reaction (Vo),
							enzyme
							activity,
							specific
	1	1					

7.		\checkmark	\checkmark	\checkmark	\checkmark	Link:
						carbohydrates
						and lipids to
						blood typing;
						and the
						mechanisms of
						action of the
						different
						classes of
						inhibitors in
						relation to the
						Lineweaver-
						Burk or double-
						reciprocal plot.
8.		\checkmark	\checkmark	\checkmark	\checkmark	Appraise: the
						function of
						proteins and
						enzymes in the
						body under
						different
						mechanisms of
						reversible and
						irreversible
						enzyme
						modification;
						and the effect
						of nonspecific
						inhibitors on
						protein
						structure and
						function.

23. The matrix linking the intended learning outcomes of the course -CLO's with the intended learning outcomes of the program -PLOs:

PLO's	1	2	3	4	5	6	7	8	Descriptors**			
CLO's									А	В	C	
1	✓	1	✓	✓		\checkmark	\checkmark	✓	✓			
2										√		
3											\checkmark	
4									\checkmark			
5										1		
6					\checkmark						\checkmark	
7									√			
8											\checkmark	

*Linking each course learning outcome (CLO) to only one program outcome (PLO) as specified in the course matrix.

**Descriptors are determined according to the program learning outcome (PLO) that was chosen and according to what was specified in the program learning outcomes matrix in clause (21).

24. Topic Outline and Schedule:

Week	Lecture	Topic	Student Learning Outcome (SLO)	Descriptors **	Learning Types (Face to Face/Blended/ Fully Online)	Platform Used	Synchronous / Asynchronous Lecturing	Evaluation Methods	Learning Resources
	1.1	Introduction	List common and most critical elements in the human body. Differentiate the types and characteristics of non-covalent interactions. Know the biochemical importance and properties of carbon and water.	K S K	Face to face		Synchronous Lecturing	Written exam	28.A 1,2
1	1.2	Acids, bases, pH, and buffers	Recall the concepts of acids, bases, amphoteric molecules, and the ionization of water and weak acids. Apply the molecular expressions: molarity, normality, equivalence, pH, and pKa.	K S	Face to face		Synchronous Lecturing	Written exam	28.A 1,2
1	1.3	Acids, bases, pH, and buffers	Know the chemical concept of different types of buffers, buffering capacity, midpoint, and titration. Apply the Henderson- Hasselbalch equation.	K S	Face to face		Synchronous Lecturing	Written exam	28.A 1,2
	1.4	Acids, bases, pH, and buffers	List physiological buffers and translate knowledge in normal and abnormal conditions.	K, S	Face to face		Synchronous Lecturing	Written exam	28.A 1,2
	1.5	Acids, bases, pH, and buffers	List physiological buffers and translate knowledge in normal and abnormal conditions.	K, S	Face to face		Synchronous Lecturing	Written exam	28.A 1,2

	2.1	Macromolecules and carbohydrates I	Know the concepts of macromolecules and how they are synthesized and broken down. Define carbohydrates. Comprehend the classifications, drawing, structure, and function of carbohydrates (mono-, di- , oligo-, and poly-). Apply the concept of isomerism to monosaccharides	K K S	Face to face	Synchronous Lecturing	Written exam	28.A 1,2
	2.2	Carbohydrates II	Identify substituted and modified saccharides (mono- and poly-).	K	Face to face	Synchronous Lecturing	Written exam	28.A 1,2
2	2.3	Carbohydrates III and Lipids I	Differentiate proteoglycans and glycoproteins. Link carbohydrates to blood typing. Define lipids. Identify the classifications, drawing, structure, and function of lipids (fatty acids, triglycerides, waxes, phospholipids, glycolipids, and steroids.	S S K K	Face to face	Synchronous Lecturing	Written exam	28.A 1,2
	2.4	Lipids II	Identify the classifications, drawing, structure, and function of lipids (fatty acids, triglycerides, waxes, phospholipids, glycolipids, and steroids. Differentiate the basic mechanism and players of lipid transport in the blood.	K S	Face to face	Synchronous Lecturing	Written exam	28.A 1,2
	2.5	Lipids III	Recall the complex structure of cell membranes and the function of the different components.	K, S	Face to face	Synchronous Lecturing	Written exam	28.A 1,2
3	3.1	Nucleic acid	Define nucleic acids and nucleotides. Identify the classifications, drawings, structure, and functions of nucleic acids.	K K	Face to face	Synchronous Lecturing	Written exam	28.A 1,2

				r	1		r	
		List modified nucleotides.	K					
		Define proteins.	К					
3.2	Amino acids I	List amino acids.	К	Face to face		Synchronous	Written exam	28.A
0.12		Differentiate the structure, isomerism, and classes of amino acids.	S			Lecturing		1,2
		Identify the ionization states of amino acids.	K					
3.3	Amino acids II	Know the concept of isoelectric point.	К	Face to face		Synchronous Lecturing	Written exam	28.A 1,2
		List modified and specialized amino acids.	К					
		Recall the four levels of protein structure.	K					
	Polypeptides and protein structure I	Recall of features of the peptide bond.	К	Face to face	Sy			
3.4		Apply the concept of isoelectric point of amino acids to polypeptides.	S			Synchronous Lecturing	Written exam	28.A
		Differentiate the different secondary structures of proteins and their structural significance.	S			C		1,2
		Understand the formation of the tertiary structure of proteins.	K					
		Define quaternary structure.	К					
	Dobmentides and	Know the concept of complex protein structures (glycoproteins, lipoproteins, phosphoproteins).	К			Suncharonous		28 4
3.5	Polypeptides and protein structure II	Apply the concepts of denaturation and renaturation to protein structure and function.	S	Face to face		Lecturing	Written exam	1,2
		Apply the previous information to pathological defects in protein formation.	S					

				К				
4	4.1	Protein structure- function relationship (part I: fibrous proteins)	Recognize the different classes of proteins (fibrous, globular).		Face to face	Synchronous Lecturing	Written exam	28.A 1,2
	4.2	Protein structure- function relationship (part II: globular proteins Hemoglobin and Myoglobin - Structure)	Discuss examples of different proteins from each class (mainly collagen, myoglobin, hemoglobin) in connection to their	K, S				
	4.3	Protein structure- function relationship (part III: globular proteins Hemoglobin and Myoglobin - Regulation)	function in light of previous knowledge. Discuss hemoglobin regulation	K, S K, S	Face to face	Synchronous Lecturing	Written exam	28.A 1,2
	4.4	Protein structure- function relationship (part IV: globular proteins Hemoglobinopathies)	Discuss Hemoglobinopathies		Face to face	Synchronous Lecturing	Written exam	28.A 1,2
	4.5	Protein structure- function relationship (part V: immunoglobulins)	Discuss examples of different proteins from each class (immunoglobulins, and plasma proteins) in connection to their function in light of previous knowledge.	K, S	Face to face	Synchronous Lecturing	Written exam	28.A 1,2
	5.1	OFF						
	5.2	Midterm Exam						
	5.3	Protein structure- function relationship (part VI: plasma proteins)	Discuss examples of different proteins from each class (immunoglobulins, and plasma proteins) in connection to their function in light of previous knowledge.	K, S	Face to face	Synchronous Lecturing	Written exam	28.A 1,2
5	5.4	Enzymes (introduction)	Define enzymes.	K	Face to face	Synchronous Lecturing	Written exam	28.A 1,2
	5.5	Enzymes (introduction)	Recall the general properties and functions of enzymes. List the classes of enzymes and differentiate the reactions they catalyze. Recall the major features of active sites.	K K S	Face to face	Synchronous Lecturing	Written exam	28.A 1,2
				5				

				I			I	
			Differentiate types of enzyme-substrate interactions.	К				
			Recall the concept of free energy and activation energy.					
	6.1	Enzymes kinetics and mechanisms of regulation – 1	Define enzyme kinetics. Apply the concept of Vo, Vmax, and KM, and their	K	Face to face	Synchronous Lecturing	Written exam	28.A 1,2
			biological significance.	S				
			the Michaelis-Menten equation.	S				
	6.2	Enzymes kinetics and mechanisms of regulation – 2	Apply the enzyme units (Vmax, turnover number, specificity constant, rate of reaction (Vo), enzyme activity, specific activity).	S	Face to face	Synchronous Lecturing	Written exam	28.A 1,2
			Link the mechanisms of action of the different classes of inhibitors in relation to the Lineweaver-Burk or double-reciprocal plot.	S				
			Know the role of the	К				
6	6.3	Enzymes kinetics and mechanisms of regulation – 3	factor of diffusion (compartmentalization and enzyme complexing) in enzyme regulation.		Face to face	Synchronous Lecturing	Written exam	28.A 1,2
		Enzymes kinetics and mechanisms of regulation – 4	Describe how enzyme activity can be regulated	К				
			by physiological and pharmacological inhibitors.	К				
			Recall the concept of allosteric regulation.	К				
	6.4		Identify the role of small and large enzyme regulatory molecules.	К	Face to face	Synchronous Lecturing	Written exam	28.A
			Comprehend the mechanisms of reversible and irreversible enzyme modification.	к		Lociality		- ,-
			Define modes of regulation.	K, S				
			Discuss the effect of nonspecific inhibitors (temperature, pH) on protein structure and function.					

الجامعة الاردنية

g Written exam 28.A 1,2
pus 28.A
g Written exam 1,2
g Written exam 28.A 1,2

25. Evaluation Methods:

Opportunities to demonstrate achievement of the ILOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	SLOs	Descriptors**	Period (Week)	Platform			
Midterm exam	40	Up to amino acids and peptides	From 1.1 – 3.3	K S	5 th week	Paper-based exam			
Final exam	60	From protein structure to the end	From 3.4 – 7.2	K S	8 th week	Paper-based exam			
** K: Knowledge, S: Skills"									

* According to the instructions for granting a Bachelor's degree.

******According to the principles of organizing semester work, tests, examinations, and grades for the bachelor's degree.

Mid-term exam specifications table*

(The tables below will be completed on separate forms by course coordinators prior to conduction of each exam according to Accreditation and Quality Assurance Centre procedures and forms)

No. of questions/ cognitive level					No. of	Total	Total no.	CLO/	CLO	
Create %10	Evaluate %10	analyse %10	Apply %20	Understand %20	Remember %30	questions per CLO	exam mark	of questions	Weight	no.
1	1	1	4	2	1	10	100	100	10%	1

Final exam specifications table

No. of questions/ cognitive level						No. of	Total	Total no.	CLO	CLO
Create %10	Evaluate %10	analyse %10	Apply %20	Understand %20	Remember %30	questions per CLO	exam mark	of questions	Weight	no.
										1
										2
										3
										4
										5

26. Course Requirements:

- ✓ Classroom Lectures
- ✓ Internet connection
- ✓ Online educational material using Moodle platform (Electronic Videos and Activities)

27. Course Policies:

A- Attendance policies:

Attendance will be monitored by the course coordinator. Attendance policies will be announced at the beginning of the course.

B- Absences from exams and handing in assignments on time:

Will be managed according to the University of Jordan regulations. Refer to <u>http://registration.ju.edu.jo/Documents/daleel.pdf</u>

C- Health and safety procedures:

Faculty Members and students must always, conform to Health and Safety rules and procedures.

D- Honesty policy regarding cheating, plagiarism, misbehavior:

As a student in this course (and at this university) you are expected to maintain high degrees of professionalism, commitment to active learning and participation in this course and also integrity in your behavior in and out of the classroom. Students violate this policy would be subjected to disciplinary action according to University of Jordan disciplinary policies

E- Grading policy:

Grade-point average, Rules are preset by the Faculty and Department Councils

F- Available university services that support achievement in the course:

Availability of comfortable lecture halls, data show, internet service and E learning website <u>https://elearning.ju.edu.jo/</u>.

28. References:

A- Required book(s), assigned reading and audio-visuals:

- 1. Biochemistry; Mary K. Campbell and Shawn O. Farrell, Brooks Cole; 7th edition.
- 2. Mark's Basic Medical Biochemistry by M. Lieberman of A. Marks, Lippincott, Williams and Wilkins, 2013. 4th edition, Concept in Biochemistry by R. Boyers

B- Recommended books, materials, and media:

NCBI Bookshelf:

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Books)

- 1. The Medical Biochemistry Page: (<u>http://web.indstate.edu/thcme/mwking/home.html</u>)
- 2. Biochemistry, Garret and Grishan, Second Ed.: http://web.virginia.edu/Heidi/home.htm

29. Additional information:

Name of the Instructor or the Course Coordi	nator:	
Professor Nafez Abu Tarboush	Signature:	Date: 23-6-2025
Name of the Head of Quality Assurance Committee/ Department		
Dr Enas Al-Zayadneh	Signature:	Date:
Name of the Head of Department		11-5-2025
Dr Mohammad Al Khatatbeh	Signature:	Date:
Name of the Head of Quality Assurance Committee/ School or Center		23/6/2025
Professor Ayman Wahbeh	Signature:	Date:
Name of the Dean or the Director		
Professor Ayman Wahbeh.	Signature:	Date:

