Introduction to Biochemistry

Summer 2024/2025

Course information

- Recommended textbooks
 - Marks' Basic Medical Biochemistry: A Clinical Approach 5th Edition, by Michael Lieberman (Author), Alisa Peet MD (Author), 2018
 - Biochemistry 8th edition by Mary Campbell (Author) and Shawn Farrell (Author)

- Online:
 - https://themedicalbiochemistrypage.org/
- Instructors
 - Prof. Nafez Abu Tarboush

Outline

- Introduction
- Acids and bases, pH, and buffers
- Macromolecules: Carbohydrates, lipids, amino acids, peptides, and proteins
- Protein structure-function relationship
- Part I: Fibrous proteins: collagen, elastin, and keratins

- Part II: Globular proteins (plasma proteins, myoglobin, hemoglobin, and immunoglobulins)
- Part III: Regulation of hemoglobin
- Enzymes: structural features and classification, kinetics, mechanisms of regulation, cofactors
- Protein purification and analysis

Biochemistry & chemical composition of living organisms

Biochemistry = understanding life

- Know the chemical structures and address the function of biological molecules
- Understand the interaction and organization of different molecules within individual cells and whole biological systems
- Understand bioenergetics (the study of energy flow in cells)
- Biochemistry in medicine:
 - explains all disciplines
 - diagnose and monitor diseases
 - design drugs (new antibiotics, chemotherapy agents)
 - understand the molecular bases of diseases

You do not have to know biochemistry to be a physician, but it makes you an elite physician if you do

Chemical elements in living creatures

- Four primary: carbon, hydrogen, oxygen, & nitrogen
- Others exist in trace amounts but are essential, elements (mostly metals)

H																
Li	Be sector beytion											B Nar bos	Cuton Catom	N	.0	F
Na is	Mg Nase Magnature											to Al Almana	"Si	Pagetona	"S	"CI 31.40 Children
۲ ا	an Ca catan Catan	SC 	22 Ti 17.007 Tilanium		, Cr i {	n Mn	Fe	, Co	, NI		* Zn	Ga and a second	Ge	As	Se	Br
37 Rb 8.48 8.48	Sr Sr trates	* * ****	* Zr Joonium	Nb Notes	Mo	TC # Technetium	H Ru Ndenium	* Rh	49 Pd Votet Paladum	[₽] Ag	e Cd ran Cabacys	" In	* Sn	51 Sb 55.71 Addressly	Te ur.e Teloun	• - • • •
Cs Cs Ceelun	Ba	sr.n La-Lu	72 Hf State	Ta sea	W Numeral Strangestern	Re Bess	78 Os 98.21 0,000,00	" Ir #44	Pt	[™] Au	Hg	* TI 355	Pb	Bi	Po	At
Francium	Ra Bass	Ac	Th International	Pa Ba	*2 U 296.00 Utanium											

Name		Symbol	Body Weigh		
	Major El	ements (Total 98.5	%)		
Oxygen		0	65.0		
Carbon		С	18.0		
Hydrogen		Н	10.0		
Nitrogen		Ν	3.0		
Calcium		Ca	1.5		
Phosphorus		Р	1.0		
	Lesser I	Elements (Total 0.89	%)		
Sulfur		S	0.25		
Potassium		К	0.20		
Sodium		Na	0.15		
Chlorine		CI	0.15		
Magnesium		Mg	0.05		
Iron		Fe	0.006		
	Trace E	lements (Total 0.7%)		
Chromium	Cr	Molybdenum	Мо		
Cobalt	Co	Selenium	Se		
Copper	Cu	Silicon	Si		
Fluorine	F	Tin	Sn		
lodine	1	Vanadium	V		

Zinc

Mn

Manganese

Elements of the Human Body

Zn

of

TABLE 2.1

Bulk biological elements Trace elements believed to be essential for bacteria, plants or animals

Possibly essential trace elements for some species

He

Ne

Ar

Kr

Xe

Rn

Important terms

- Electronegativity
- Covalent bonds
 - Polar vs. non-polar
 - Single vs. multiple
- Non-covalent interactions
 - Electrostatic interactions
 - Hydrogen bonds (donor and acceptor)
 - Van der Waals interactions
 - Hydrophobic interactions
 - Hydrophobic versus hydrophilic molecules
 - Nucleophile vs electrophile

Important properties of bonds

- Bond strength (amount of energy that must be supplied to break a bond)
- Bond length: the distance between two nuclei
- Bond orientation: bond angles determining the overall geometry of atoms
- The three-dimensional structures of molecules are specified by the bond angles and bond lengths for each covalent linkage.

Polarity

- Electrons are shared unequally = "dipoles"
- Both water and CO₂ contain polar bonds, but only water is a polar molecule. Why?

What are non-covalent interactions?

- They are reversible and relatively weak
- Electrostatic interactions (charge-charge interactions):
 - Quite strong in the absence of water
- Hydrogen bonds
 - Shared between a donor and an acceptor
- Van der Waals interactions
 - Unequal distribution of electronic charge around an atom changes with time
 - The strength of the attraction is affected by distance

bond acceptor

bond donor

0-H

What are non-covalent interactions?

- Dipole-dipole interaction
- Dipole-charge interaction
- Hydrophobic interactions
 - Self-association of nonpolar compounds in an aqueous environment

Properties of noncovalent interactions

- Reversible
- Relatively weak
- Molecules interact and bind specifically
- Significantly contribute to the structure, stability, and functional competence of macromolecules in living cells
- Can be either attractive or repulsive
- Involve interactions both within the biomolecule and between it and the water of the surrounding environment

Carbon

Properties of carbon (1)

- It can form four bonds
- Single, double, or triple bonds
- Bonds are very stable
- They link C atoms together in chains and rings
 - These serve as backbones

Properties of carbon (2)

- Three-dimensional structures (angles)
- Rotation (molecules of different shapes)
- Electronegativity (between others):
 It can form polar and non-polar molecules

Pure carbon is not water soluble (graphite, diamond)

Water

Properties of water (1)

Polar

Angular

- Dipole-dipole interactions and dipole-charge interactions
- Highly cohesive
- produces a network
- Water is an excellent solvent
 - Small
 - Weakens electrostatic forces and hydrogen bonding between polar molecules

Properties of water (2)

- It is reactive because it is a nucleophile:
 - A nucleophile is an electron-rich molecule that is attracted to positively-charged or electrondeficient species (electrophiles).

It can be ionized

$$H_2O + H_2O \longleftarrow H_3O^{\oplus} + OH^{\Theta}$$

Note: $H_3O^+ = H^+$

Acids and bases

Definitions and terms

- Acid:
 - A substance that produces H⁺ (H₃O⁺) when dissolved in water or reacts with other substances
 - Monoprotic acid: HCl, HNO3, CH3COOH
 - Diprotic acid: H₂SO₄
 - Triprotic acid: H₃PO₃

 $\begin{array}{cccc} H \longrightarrow Cl &+ & H \longrightarrow \ddot{O} & \longrightarrow \\ & & & & \\ H & & & & \\ H & & & H \end{array}^{+} & Cl^{-} \\ H & & & H \end{array}$

- Base:
 - A substance that produces OH⁻ when dissolved in water or accepts H⁺ when reacts with other molecules
 - NH₃

Water = amphoteric

- Ampho = 'both' or 'dual'
- Substances that can act as an acid in one reaction and as a base in another
- With ammonia (NH₃), water acts as an acid because it donates a proton (hydrogen ion) to ammonia

 $NH_3 + H_2O \leftrightarrow NH4^+ + OH^-$

With hydrochloric acid, water acts as a base

 $HCI+H_2O \rightarrow H_3O++CI^-$

Acid/base strength

- Acids differ in their ability to release protons

 Strong acids dissociate 100%.
- Bases differ in their ability to accept protons
 - Strong bases have a strong affinity for protons.
- For multi-protic acids (H₂SO₄, H₃PO₄), each proton is donated at different strengths

Rule

 The stronger the acid, the weaker the conjugate base
 Strong acids and bases are one-way reactions
 HCl → H⁺ + Cl⁻
 NaOH → Na⁺ + OH⁻

 Weak acids and bases do not ionize completely

 $HC_{2}H_{3}O_{2} \leftrightarrow H^{+} + C_{2}H_{3}O_{2}^{-}$ $NH_{3} + H_{2}O \leftrightarrow NH_{4}^{+} + OH^{-}$

Equilibrium constant and Acid dissociation constant

Acid/base solutions are at constant equilibrium
 Equilibrium constant (Keq) for such reactions

 $HA \leftrightarrow H^+ + A^-$

$$K_a = \frac{[\mathrm{H}_3\mathrm{O}^+] \cdot [\mathrm{A}^-]}{[\mathrm{H}\mathrm{A}]}$$

- Value of the Ka indicates the direction of the reaction

Ka vs. pKa

TABLE 2.4 Dissociation constants and pK_a values of weak acids in aqueous solutions at 25°C

Acid	<i>K</i> _a (M)	p <i>K</i> _a
HCOOH (Formic acid)	1.77×10^{-4}	3.8
CH ₃ COOH (Acetic acid)	1.76×10^{-5}	4.8
CH ₃ CHOHCOOH (Lactic acid)	1.37×10^{-4}	3.9
H ₃ PO ₄ (Phosphoric acid)	7.52×10^{-3}	2.2
$H_2PO_4^{\bigcirc}$ (Dihydrogen phosphate ion)	6.23×10^{-8}	7.2
HPO_4^{\bigcirc} (Monohydrogen phosphate ion)	2.20×10^{-13}	12.7
H ₂ CO ₃ (Carbonic acid)	4.30×10^{-7}	6.4
HCO_3^{\bigcirc} (Bicarbonate ion)	5.61×10^{-11}	10.2
NH_4^{\oplus} (Ammonium ion)	5.62×10^{-10}	9.2
CH ₃ NH ₃ ⊕ (Methylammonium ion)	2.70×10^{-11}	10.7

TABLE | 9.4 K_A AND PK_A VALUES FOR SELECTED ACIDS me Formula K. nK.

Name	Formula	Ka	рK _a
Hydrochloric acid	HCl	$1.0 imes 10^7$	-7.00
Phosphoric acid	H_3PO_4	$7.5 imes 10^{-3}$	2.12
Hydrofluoric acid	HF	$6.6 imes 10^{-4}$	3.18
Lactic acid	CH ₃ CH(OH)CO ₂ H	$1.4 imes 10^{-4}$	3.85
Acetic acid	CH ₃ CO ₂ H	$1.8 imes 10^{-5}$	4.74
Carbonic acid	H_2CO_3	$4.4 imes 10^{-7}$	6.36
Dihydrogenphosphate ion	$H_2PO_4^-$	$6.2 imes 10^{-8}$	7.21
Ammonium ion	${\rm NH_4}^+$	$5.6 imes 10^{-10}$	9.25
Hydrocyanic acid	HCN	4.9×10^{-10}	9.31

Measurements of acids and bases

Molarity

- Measurement of concentration
- Moles = grams / MW
- M = moles / volume (L)
- Grams = M x volume (L) x MW
 - How many grams do you need to make 5M NaCl solution in 100 ml (MW 58.4)?
 - grams = 58.4 x 5 M x 0.1 liter = 29.29 g

Equivalents

- An equivalent is the number of moles of hydrogen ions that an acid can donate or a base can accept.
- For ions, one equivalent (Eq) is equal to the number of ions that carry 1 mol of charge.
- For acids:
 - 1 mole HCl = 1 mole [H⁺] = 1 equivalent
 - -1 mole $H_2SO_4 = 2$ moles [H+] = 2 equivalents
 - $1 \text{ eq of H}_2SO_4 = \frac{1}{2} \text{ mol (because 1 mole gives two moles of H+ ions)}$
- For ions:
 - 1 eq of Na+ = 23.1 g, 1 eq of Cl- = 35.5 g, 1 eq of Mg2+ = (24.3)/2 = 12.15 g

Problems to solve

- How many equivalents are in the following:
 (a) 5.0 g HNO₃
 (b) 12.5 g Ca(OH)₂
 (c) 4.5 g H₃PO₄
- The typical concentration of Mg²⁺ in blood is 3 mEq/L. How many milligrams of Mg²⁺ are in 250 mL of blood?

Exercise

- Calculate milligrams of Ca⁺² in blood if total concentration of Ca⁺² is 5 mEq/L.
- Note: atomic weight of Ca⁺² is 40.1 grams/mole
 - -1 Eq of Ca⁺² = 40.1 g/2 = 20.1 g
 - Grams of Ca⁺² in blood =
 - (5 mEq/L) x (1 Eq/1000 mEq) x (20.1 g/ 1 Eq)
 - = 0.1 g/L
 - =100 mg/L

Electrolytes

- Electrically-charged minerals when dissolved in water
- Sodium, potassium, chloride, calcium, magnesium, phosphate, and bicarbonate
- Vital for various bodily functions such as nerve and muscle function, fluid balance, acid-base balance, and blood pressure
- Heavy and continuous diarrhea can result in dehydration and very low sodium levels in the body (hyponatremia)
- Heavy sweating leads to dehydration and loss of electrolytes

URAL REHYDRATION SALTS

Mfg

date

Each sachet contains the equi	ivalent of:
Sodium Chloride	3.5 g.
Potassium Chloride	1.5 c.
Trisodium Citrate, dihydrate	2.9 0.
Glucose Anhydrous	20.0 g.

DIRECTIONS Dissolve in ONE LITRE of drinking water.

To be taken orally-Infants - over a 24 hour period Children - over an 8 to 24 hour period, according to age or as otherwise directed under medical supervision.

CAUTION: DO NOT BOIL SOLUTION

MANUFACTURER: Jianas Bros., Packaging Co. Kansas City, Missouri, U.S.A.

Molarity and equivalents

- Equivalents = n x M x volume (L)
- One equivalent of any acid neutralizes one equivalent of base
- Basis of titration (neutralization)

10.92 Titration of a 12.0 mL solution of HCl requires 22.4 mL of 0.12 M NaOH. What is the molarity of the HCl solution?

Eq of base = Eq of acid n x M1 x Vol1 = n x M2 x Vol2 1 x 0.12 x 22.4 =1 x M1 x 12 M1 = (0.12 x 22.4) / 12 M1 = 0.224 M

Problem to solve

10.93 What volume of 0.085 M HNO₃ is required to titrate 15.0 mL of 0.12 M Ba(OH)₂ solution?

Note that 1 mole of HNO₃ produces 1 mole of H⁺, but 1 mole of Ba(OH)₂ produces 2 moles of OH⁻. In other words, the n is different.

Eq of acid = Eq of base n x M1 x Vol1 = n x M2 x Vol2 1 x 0.085 x Vol = 2 x 0.12 x 15 Vol = (2 x 0.12 x 15) / 1 x 0.085 Vol = 42.35 mL

Antacids

CaCO₃ + 2 HCl \rightarrow CaCl₂ + H₂O + CO₂ NaHCO₃ + HCl \rightarrow NaCl + H₂O + CO₂ Al(OH)₃ + 3 HCl \rightarrow AlCl₃ + 3 H₂O Mg(OH)₂ + 2 HCl \rightarrow MgCl₂ + 2 H₂O

Alkaline compounds (neutralize HCl)

- Reduce stomach acidity and providing relief from heartburn and indigestion (dyspepsia)
- Reduce digestion of proteins by pepsin (pH 1-2 vs. 3.5-5)
- Examples: Magnesium Hydroxide, Aluminum Hydroxide, Calcium Carbonate, Sodium Bicarbonate

Ionization of water

 For simplicity, we refer to the hydronium ion as a hydrogen ion (H⁺) and write the reaction equilibrium as:

Water undergoes <u>Self Ionisation</u> $H_2O_{(I)} \rightleftharpoons H^+_{(aq)} + OH^-_{(aq)}$ Or $H_2O_{(I)} + H_2O_{(I)} \rightleftharpoons H_3O^+_{(aq)} + OH^-_{(aq)}$

Equilibrium constant

The equilibrium constant K_{eq} of the dissociation of water is:

The equilibrium constant for water ionization under standard conditions is 1.8 x 10⁻¹⁶ M.

The ion product of water (Kw)

Since there are 55.6 moles of water in 1 liter, the product of the hydrogen and hydroxide ion concentrations results in a value of 1 x 10⁻¹⁴ for:

This constant, Kw, is called the ion product for water

$$K_{w} = [H^{\oplus}][OH^{\ominus}] = 1.0 \times 10^{-14} M^{2}$$

$[H^+]$ and $[OH^-]$

- For pure water, there are equal concentrations of [H⁺] and [OH⁻], each with a value of 1 x 10⁻⁷ M.
- Since Kw is a fixed value, the concentrations of [H⁺] and [OH⁻] are inversely changing.
- If the concentration of H⁺ is high, then the concentration of OH⁻ must be low, and vice versa. For example, if [H⁺] = 10⁻² M, then [OH⁻] = 10⁻¹² M

