IMMUNOGLOBULINS

DEFENSE LINES (SPECIFIC VS. NON-SPECIFIC)

The immune system plays a major role in the body's defense mechanisms

> Non-specific	> Specific (acquired)	
First line	Second line	> Third line
 ▶ Barriers ✓ Physical: skin, hair, mucous membranes ✓ Chemical: sweat, tears, saliva, stomach acid, urine 	 ✓ Phagocytic WBCs ✓ Antimicrobial proteins ✓ The inflammatory response 	LymphocytesAntibodies

ACQUIRED (SPECIFIC) IMMUNITY

- Two major components:
 - T lymphocytes (thymus, cell-mediated immunologic processes; graft rejection, hypersensitivity reactions, & defense against malignant cells and many viruses)
 - B lymphocytes (bone marrow, synthesis of circulating, humoral antibodies;
 Igs)
 - plasma cells: specialized B cells that synthesize and secrete immunoglobulins into the plasma in response to exposure to antigens
 - Genetic deficiency is reported (recurrent infections)

IMMUNOGLOBULINS & ANTIGENS

- Antibodies: glyco-proteins synthesized by plasma cells & able to bind foreign molecules even if not encountered before
 - High specificity & high affinity
 - Huge number of different kinds (~108)
 - Synthesis is stimulated by having an immunogen
 - Induces the "effector functions": Inactivation, degradation, lysis
- Antigen: Foreign molecules to which Igs bind
 - Can elicit antibody formation (immounogen)
 - Macromolecule; Protein, polysaccharide, nucleic acid
 - Epitope (antigenic determinant): each epitope is recognized by a different antibody
 - Hapten: small molecule, antigen if attached to a macromolecule

IMMUNOGLOBULINS - STRUCTURE

- All contain a minimum of 2 identical light chains (25 kDa) & 2 identical heavy chains (50 kDa)
- Held together by disulfide bonds
- Y-shaped: binding of antigen at both tips
- Each chain has specific domains
- L chain: amino half (V_L) , carboxylic half (C_L)
- H chain: $\frac{1}{4}$ amino (V_H) , $\frac{3}{4}$ carboxylic $(C_H 1, C_H 2, C_H 3)$

IMMUNOGLOBULINS - STRUCTURE

- Antigen binds V_H & V_L domains
- Papain: 2 antigen-binding fragments (Fab) and one crystallizable fragment (Fc)
- Pepsin: one (Fab)₂ fragment and one crystallizable fragment (Fc)
- Hinge region: C_H1 & C_H2 domains;
 flexibility & independent movement
- Fc & hinge regions differ in different classes of antibodies

IMMUNOGLOBULINS - STRUCTURE

- 2 L chains 25 kDa 214 AA
- 2 H chains 50 kDa 446 AA
- Light chain:
 - 1-~110 variable, 111 214 similar
- Heavy chain:
 - 1-~113 variable, 114 446 similar

• 3 stretches (7-12 amino acids) hyper-variable

IMMUNOGLOBULIN - INTERACTIONS

- With antigen (infinite):
 - Electrostatic, Hydrogen, Van der Waal's, Hydrophobic
 - The (Fab)2 fragment CAN:
 - Detect, bind & precipitate the antigen
 - Block the active sites of toxins
 - Block interactions between host and pathogen

- With other cells and molecules through the Fc portion (finite)
 - The (Fab)2 fragment CANNOT activate:
 - Inflammatory functions associated with cells
 - Inflammatory functions of complement proteins
 - Intracellular cell signaling molecules

DOMAIN STRUCTURAL VARIATION OF IMMUNOGLOBULINS — CONSTANT REGION

Domains are folded, compact, protease resistant structures

THE IMMUNOGLOBULIN FOLD

The characteristic structural motif of all Ig domains

A barrel

Barrel under construction

A β barrel of 7 (C_L) or 8 (V_L) polypeptide strands connected by loops and arranged to enclose a hydrophobic interior

Single V_L domain

THE IMMUNOGLOBULIN FOLD

Unfolded V_L region showing 8 antiparallel β -pleated sheets connected by loops

GENES INVOLVED & DIVERSITY

The "one gene, one protein" concept is not valid

 $V_1 V_2 \dots V_{39} V_{40}$

- Immune system can generate > 10⁸ antibodies
- Human genome contains ~ 25,000 genes!
- Light chain is a product of at least 3 genes:
 - Variable (V_I) gene
 - Joining region (J) gene
 - Constant region (C_I) gene

- Variable region (V_H) gene
- Diversity region (D) gene
- Joining region (J) gene
- Constant region (C_H) gene

VARIABLE REGIONS

- No two variable regions in different humans are identical
- Relatively invariable regions and other hypervariable regions
- L chains have 3 hypervariable regions (in V_L) and H chains have four (in V_H)
- These hypervariable regions comprise the antigen-binding site
- Dictate the amazing specificity of antibodies

HYPERVARIABLE REGIONS COMPLEMENTARITY-DETERMINING REGIONS (CDRS)

- About 7-12 amino acids in each one that contribute to the antigen-binding site
- CDRs are located on small loops of the variable domains

• Framework regions: the surrounding polypeptide regions among the

hypervariable regions

VARIABILITY IN OTHER PROTEINS

CDRS INTERACTION WITH ANTIGENS

- Antigen-antibody interactions is based on mutual complementarity between surfaces
- Large antigens: interact with all of the CDRs of an antibody
- Small antigens: interact with only one or a few CDRs that form a pocket or groove in the antibody molecule

Protein: Influenza haemagglutinin

Hapten: 5-(paranitrophenyl phosphonate)pentanoic acid

IMMUNOGLOBULIN CLASSES - OVERVIEW

IgG IgE IgD

• Igs are classified based on the nature of their heavy chain

Class	Heavy chain	Chains structure	% in serum	T _{1/2} (days)	Comp. fixation	Placental crossing
IgM	μ	Mono-, penta-, & hexa	5-10	5-10	++++	No
IgG	γ	Monomer	80	23	++	Yes
IgA	α	Mono-, di-, or tri	10-15	6	-	No
IgD	δ	Monomer	0.2-1	3	-	No
IgE	3	Monomer	0.002	2	-	No

DOMAINS IN DIFFERENT CLASSES (H-CHAIN)

IgM CLASS

- Location: Mainly intravascular (blood & lymph), B-cell surface (monomer)
- Known Functions:
 - ✓Primary immune response (lst produced)
 - ✓Primary role in antigen agglutination (ex. ABO)
- ➤ IgM only exists as a monomer on the surface of B cells
- Monomeric IgM has a very low affinity for antigen
- ➤A J-chain is involved in the process of multemerization
- >Cμ4 mediates multimerization (Cμ3 may also be involved)

THE PROCESS OF IGM MULTIMERISATION

IgG CLASS

- Location: Blood, lymph, intestine
- Produced in response to a wide variety of antigens, (ex. bacteria, viruses)
- Known Functions
 - ✓ The predominant antibody produced in the 2⁰ immune response
 - ✓ Provides the major line of defense for the fetus & during first few weeks of newborns
 - ✓ Coats organisms to enhance phagocytosis by neutrophils and macrophages (opsonization)

Binding of opsonized microbes to phagocyte Fc receptors (FcyRI) Fc receptor signals activate phagocyte

IgA CLASS

- >Structure & location:
 - ✓Plasma → monomer, dimer, or trimer
 - ✓ Secretions (tears, saliva, intestines, milk, bronchial secretion, urine)
 - → dimer attached to "secretory component"
- ► Known Functions:
 - Localized protection (respiratory, urinary tract and bowel infections)
 - >Provides immunity to infant's digestive tract & body (translocated)
 - >The process of dimerization

J chain

Secretory

component

IgA & TRANSCYTOSIS

IgD CLASS

- Location: B-cell surface (primarily), blood, and lymph
- ➤ Known Functions:
 - ✓In serum: function is unknown
 - ✓On B cell surface: initiate immune response

IgE CLASS

- Location: Blood & Bound to mast cells and basophils throughout body
- ► Known Functions:
 - Allergic reactions (histamines and heparin): increased vascular permeability, skin rashes, respiratory tract constriction (wheezing), and increased secretions from epithelium (watery eyes, runny nose)
 - ➤ Possibly lysis of worms

IgE

IMMUNOLOGICAL MEMORY

CLASS (ISOTYPE) SWITCHING

>Antibodies with identical specificity but of different classes

>Generated in a chronologic order in response to the antigen

Gene rearrangement: movement of VDJ from a site near one C gene to a site near another C gene

IDIOTYPE VS. ISOTYPES VS. ALLOTYPES

HYBRIDOMA AND MONOCLONAL ANTIBODIES

- When an antigen is injected into an animal, the resulting antibodies are polyclonal, meaning they are directed against a number of different epitopes on the antigen.
- In order to "create" an immortal B cell that produces a single antibody (monoclonal), a B cell hybridizes with a B cancer cell (myeloma).

Monoclonal antibodies made in mice can be humanized by attaching the CDRs onto appropriate sites in a human immunoglobulin molecule.

BENEFITS OF MONOCLONAL ANTIBODIES

- Measure the amounts of many individual proteins and molecules (e.g. plasma proteins, steroid hormones).
- Determine the nature of infectious agents (e.g. types of bacteria).
- Used to direct therapeutic agents to tumor cells.

• Used to accelerate the removal of drugs from circulation when they reach

toxic levels.

DISEASES

- Myelomas: increased production
- Multiple myeloma: a neoplastic condition, increase in one class, or a particular light chain (Bence Jones protein)
- Decreased production may be restricted to a single class or may involve underproduction of all classes (ex. agammaglobulinemia)

