Amino Acids

Prof. Nafez Abu Tarboush

Protein structure and function

- Greek: proteios, primary (importance)
- 50 % of body's dry weight is protein
- Free vs. attached (residue), D vs. L

TYPE	FUNCTION	EXAMPLE
Enzymes	Catalysts	Amylase—begins digestion of carbohydrates by hydrolysis
Hormones	Regulate body functions by carrying messages to receptors	Insulin—facilitates use of glucose for energy generation
Storage proteins	Make essential substances available when needed	Myoglobin—stores oxygen in muscles
Transport proteins	Carry substances through body fluids	Serum albumin—carries fatty acids in blood
Structural proteins	Provide mechanical shape and support	Collagen—provides structure to tendons and cartilage
Protective proteins	Defend the body against foreign matter	Immunoglobulin—aids in destruction of invading bacteria
Contractile proteins	Do mechanical work	Myosin and actin—govern muscle movement

The alpha carbon is the central carbon in an amino acid to which the amine, carboxyl and side chain R groups attach.

Names and codes

Glu

Gln

Gly

His

lle

Glutamic acid

Glutamine

Glycine

Histidine

Isoleucine

Amino Acid	3-letter code	1-letter code	Amino Acid	3-letter code	1-letter code
Alanine	Ala	Α	Leucine	Leu	L
Arginine	Arg	R	Lysine	Lys	K
Asparagine	Asn	N	Methionine	Met	М
Aspartic acid	Asp	D	Phenylalanine	Phe	F
Cysteine	Cys	C	Proline	Pro	Р

Serine

Threonine

Tryptophan

Tyrosine

Valine

Ser

Thr

Trp

Tyr

Val

W

Y

Ε

Q

G

Н

Classification (according to the polarity of R group)

Non-polar	Polar	Charged (positive)	Charged (negative)
Alanine	Serine	Lysine	Glutamate
Valine	Threoeine	Arginine	Aspartate
Leucine	Glutamine	Histidine	
Isoleucine	Asparagine		
Methionine	Cysteine		
Tryptophan	Tyrosine		
Phenylalanine			
Proline			
Glycine			

Polar, Charged

Histidine (His, H)

Polar, Charged

Arginine

Polar, Uncharged

Polar, Uncharged

Non-polar, Uncharged

Non-polar, Uncharged

Important notes

Titration of amino acids: what is an isoelecrtic point (pI)?

Zwitterion form

$$pI = \frac{pK_{a1} + pK_{a2}}{2}$$

Lysine as a Zwitterion

Amino Acid	Abbreviation		pK ₁	pK ₂	pK _R	
	3- Letters	1- Letter	-соон	-NH ₃ +	R group	pl
Alanine	Ala	Α	2.34	9.69	15	6.00
Arginine	Arg	R	2.17	9.04	12.48	10.76
Asparagine	Asn	N	2.02	8.80	100	5.41
Aspartic Acid	Asp	D	1.88	9.60	3.65	2.77
Cysteine	Cys	С	1.96	10.128	8.18	5.07
Glutamic Acid	Glu	E	2.19	9.67	4.25	3.22
Glutamine	Gln	Q	2.17	9.13	(F)	5.65
Glycine	Gly	G	2,34	9,60	T#	5.97
Histidine	His	Н	1.82	9.17	6.00	7.59
Isoleucine	lle	1	2.36	9,60		6.02
Leucine	Leu	L	2.36	9.60	ā	5.98
Lysine	Lys	K	2.18	8.95	10.53	9.74
Methionine	Met	M	2.28	9.21	j (e)	5.74
Phenylalanine	Phe	F	1.83	9.13	9	5.48
Proline	Pro	Р	1.99	10.60	la la	6.30
Serine	Ser	S	2.21	9.15	145	5.58
Thre on in e	Thr	T	2.09	9.10	æ	5.60
Tryptophan	Trp	W	2.83	9.39	100	5.89
Tyrosin e	Tyr	Y	2.20	9.11	10.07	5.66
Valine	Val	V	2.32	9.62	125	5.96

res:
$$H_2N$$
 H_2N H_2N H_3N H_4N H_5N $H_$

Is it the same in proteins?

Dissociating Group	pK _a Range
α-Carboxyl	3.5-4.0
Non-α COOH of Asp or Glu	4.0-4.8
Imidazole of His	6.5-7.4
SH of Cys	8.5-9.0
OH of Tyr	9.5-10.5
α-Amino	8.0-9.0
e-Amino of Lys	9.8-10.4
Guanidinium of Arg	~12.0

Amino Acids & life

TOP OR STATE OF THE PARTY OF TH

Posttranslational modification of Amino Acids

- Hydroxylation (-OH)
- Carboxylation (-COOH)
- Methylation (-CH₃)
- Formylation (-CH=O)
- Acetylation (CH₃CO)
- Phosphorylation (-PO₃²⁻)
- These modifications significantly extend the biologic diversity of proteins by altering their solubility, stability, catalytic activity, and interaction with other proteins

Tryptophan

$$H_3\dot{N}$$
 CH_2 CH_2 $COO^ H$ COO_2

Tryptophan

$$\begin{array}{c|c} H_s\mathring{N} & CH_2 & OH \\ \hline COO & N \\ \hline COO_2 & H \end{array}$$

5-Hydroxytryptophan

Histidine

- A potent vasodilator
- Part of the immune response
- Results in swelling and stuffiness
- Most cold medications contain antihistamines

$$CH_2-CH$$
 CH_2-CH_2
 CH_2-CH_2
 CH_2-CH_2
 CH_2-CH_2
 CH_3
 CH_2-CH_2
 CH_3
 CH_3

Glutamic Acid

- MONOSODIUM GLUTAMATE

 HO
 O
 O
 O
 Na⁺
 NH₂
 SODIUM SALT OF GLUTAMIC ACID
- MSG: a flavor enhancer, causes a physiological reaction in some people (Chinese restaurant syndrome) or MSG symptom complex: chills, headaches, and dizziness
- GABA: Inhibitory neurotransmitter (CNS), reduces neuronal excitability.
 Synthesized in brain because it does not cross the BBB. Have relaxing, anti-anxiety, and anti-convulsive effects
- γ- carboxyglutamate (Gla): Vitamin K is essential for the process

Arginine

- Precursor of nitric oxide (NO) and Urea
- NO functions: Vasodilation, inhibition of platelet adhesion, anti-oxidant, anti-inflammatory

Lysine and proline

- Part of collagen structure
- Modified as residues (posttranslational modification)
- Vitamin C relation and scurvy

Proline

Hydroxyproline

Lysine

Hydroxylysine

Peptides

Peptide bond

- Amide bond
- Resonance, Double bond
 - Planar, charged, Rigid, Unrotatable
- Hydrogen bonding; Except proline

Backbone, orientation and directionality

All other amino acids

Aspartame, the Sweet Peptide

- L-aspartyl-L-phenylalanine
- Commercial importance
- The methyl ester derivative is called aspartame
- 200 times sweeter than sugar

Phenylketonuria

- Inborn errors of metabolism; errors in enzymes of amino acids metabolism
- PKU can be easily detected and managed in newborns
- Aspartame carry a warning, Alatame (Ala instead of Phe) is a substituent

Carnosine

 Dipeptide: found in muscle tissue, (β-alanyl-L-histidine), antioxidant, chelation of heavy metals

Glutathione

Tripeptide: (γ-glutamyl-L-cysteinylglycine); a scavenger for oxidizing agents

Enkephalins

- Pentapeptides: naturally occurring analgesics
 - Tyr—Gly—Gly—Phe—Leu (Leucine enkephalin)
 - Tyr—Gly—Gly—Phe—Met (Methionine enkephalin)
- Similarities of three-dimensional structures to opiates (e.x, morphine)

Morphine

Enkephalins

Cyclic structures

