

Physiology | Lecture 3

Active transport

Reviewed by : Tala Alali

Taymaa Abdelkhaliq

Active Transport

Active transport <u>consumes</u> macro energetic molecules, we divide it into three main subcategories: <u>Primary</u>, <u>secondary</u> active transport and <u>vesicular</u> transport.

1-Primary active transport:

In this type, we have carriers (not channels) that must be phosphorylated (getting phosphate group from ATP) to transport particles from the low concentration to high concentration.

Pumps are carriers, whenever you hear "<u>Pump</u>" you should know it's **primary active transport**.

We will talk about 4 pumps in this sheet, with some information about each one of them:

A- <u>Na⁺/K⁺ pump</u>:

Transporting sodium and potassium, there is a high concentration of sodium <u>outside</u> the cell, and high concentration of potassium <u>inside</u>, as we know, Active transport is a transporting from low concentration to high concentration, so it transports sodium <u>outside</u> the cell and potassium <u>inside</u> the cell.

Both sodium and potassium ions are transported against their concentration gradient.

When the carrier phosphorylated by ATP there are conformational changes happen to the shape of the protein ,then when the carries de-phosphorylated the protein return to its previous shape

This pump helps in the regulation of cell volume by controlling concentration of solutes inside the cell (it results in a net loss of one ion) which controls water osmosis to the cell .

By expelling 3 positive ions for 2 transported into the cell , this pump creates positivity outside the cell . This *electrogenic* nature of the pump creates a potential difference of about (-4 mv) if it works alone.

You noticed that this pump keeps high concentration of sodium outside the cell (by transporting 3 sodium ions outside the cell), you will know that this high concentration of sodium outside the cell leads the secondary active transport when we talk about it.

Now imagine if this pump isn't working, what will happen? The sodium ions will have a high condense to diffuse inside the cell (from high to low concentration), and the osmolarity inside the cell will increase, leading the cell to be swelled (burst).

In conclusion, this pump is important for the cell and its activity.

These are extra pictures of this pump, our doctor didn't say more information about these pictures than the above picture.

e The other

1

f Phosphate group is released, protein returns

to original shape.

change causes the solute to be released.

a Transport protein with two binding sites.

b Specific solute binds at aroup is one site.

S Loss of phosphate restores the original conformation of the

pump protein.

transferred from ATP to protein. (6) K* is released and Na* sites are ready to bind Na* again; the cycle repeats.

No.

Na Cytop

Cell

K^{*} binding triggers release of the phosphate group.

B- H⁺ pump:

In stomach, we are releasing hydrochloric acid, to synthesize this acid, the H⁺ ions must be transported from the low concentration of it (outside the stomach) to the high concentration of it (inside the stomach) using H⁺ pumps, and along with the chloride ions, hydrochloric acid is synthesized.

This mechanism could be done using H^+/K^+ pumps too.

C- <u>H⁺/K⁺ pump</u>.

D- Ca⁺² pump:

Inside the endoplasmic reticulum, we have a high concentration of calcium, we are getting this concentration by Ca⁺² pumps, we have a plenty of these pumps in the membrane of endoplasmic reticulum transporting calcium from the cytosol into endoplasmic reticulum.

Also, it keeps a low concentration of Ca^{+2} ions inside the cells, for example: In the cardiac muscle, Ca^{+2} pump is used to transport Ca^{+2} ions out of it, if the Ca^{+2} ions kept inside the muscle it will remain contracted, that will stop the heart from working.

2-Secondary active transport:

Carriers that can transport Na⁺ along with another particle, Na⁺ in this type is transported from the <u>high</u> concentration to the <u>low</u> concentration, the <u>other</u> particle is transported from the <u>low</u> concentration to the <u>high</u> concentration.

When you hear "Na⁺ dependent carrier" then this transport is <u>Secondary active</u> <u>transport</u>.

Based on the movement direction of particles, we can divide Secondary active transport into Co-transport and Counter transport.

A- <u>Co-transport</u>:

In this type, both particles are transported in the same direction.

It could be called Symport too.

B- Counter transport:

In this type, particles are transported in opposite directions.

It could be called Antiport too.

The cell is highly regulated, one of these regulations is the specificity of Golgi Apparatus in sending vesicles to their exact destination, for example, Golgi sends Na⁺/K⁺ pump exactly to Renal ISF part not to Tubular lumen part.

Terms Related to Vesicular Transport

A- <u>Exocytosis</u>:

B- Endocytosis:

C- Phagocytosis:

There are many cells having phagocytic function in our body.

These cells must recognize pathogens, for example antibodies on pathogens are recognized by phagocytic cells.

D-<u>Receptor Mediated Endocytosis</u>:

Control of Transport and Activity of Enzymes

Over plasma membrane we have receptors, those receptors are specific, some of them are linked to channels through G-proteins (A group of protein structures, G because they use GTP). This is some sort of signal transduction mechanism that control the activity of the cell.

Once we have a ligand bound to the specific receptor, one of the G-protein subunits will dissociate (alpha subunit in this example), this subunit will cause the opening of sodium channel.

Also, the activity of channels can be controlled by specific enzymes, as you can see in the picture, we can have some type of receptors linked to:

A- An enzyme called Adenylyl cyclase:

increases the concentration of cAMP, some channels according to the concentration of cAMP become more active.

B- An enzyme called **Phospholipase C**:

Splits PIP₂ (Phosphatidylinositol 4,5-bisphosphate) into IP3 (inositol 1,4,5trisphosphate) and DG (Diacylglycerol), IP3 can change the activity of Ca⁺² channels on the membrane of endoplasmic reticulum causing the release of Ca⁺² ions from the endoplasmic reticulum into cytosol to change the activity of that cell.

Extra pictures, our doctor didn't say more information about them than the above picture.

DIFUSION Semiple diffusion Kinetic energy in decudes, etc.1 from an area of particles (ann, or any of the incoment of particles (ann, or any of the incoment of and (and (any of the incoment of and (any of the incoment of		ENERGY SOURCE	DESCRIPTION	EXAMPLES	
Simple diffusion Kinetic energy area of their higher concentration to an area of their higher concentration of their higher concentration that is, along their concentration that is, along their concentration Movement of fas, owypan, carbon the membrane Facilitated diffusion Kinetic energy Same as simple diffusion, but the gradient Movement of glucose and some ions into cells Osmosis Kinetic energy Simple diffusion of water through a selectively permeable membrane of their through the lipid phase gradient Movement of water into and out of cells directly through the lipid phase gradient Passore Simple diffusion of water through a selectively permeable membrane (either through the semipermeable membrane feither through the semipermeable membrane feither through the phase gradient Movement of water, nutrients, and gases through a capillary wall; formation of kickey filtrate Passore Movement of water into and out of concentration. Substances transport Description Movement of water into and solutes through a semipermeable membrane gradient water in throng systems. Passore Passore into a set of their through the plasm or diver hydrostatic pressure gradient Substances transport Passore Passore movement of a substance through the lipid billy of on their fibride energy. A through the substance through the lipid billy of on their fibride energy. A through their substance through the lipid billy of on their fibride energy. A through their substance through the lipid billy of on their fi	DIFFUSION				
Facilitated diffusion Kinetic energy Same as simple diffusion, but the lipid-soluble membrane carrier protein or moves through a membrane dramal Movement of glucose and some ions into cells Osmosis Kinetic energy Simple diffusion of water through a selectively permeable membrane of the membrane or via membrane protein or moves through a membrane of the membrane or via membrane protein or moves through a membrane of the membrane or via membrane protein or moves through a membrane of the membrane or via membrane protein or moves through a membrane of the membrane or via membrane protein or moves through a semipermeable membrane (shert through the plasma mem- brane or between cells) from a region region of lower hydrostatic pressure, that is, along a pressure gradient Movement of water, nutrients, and gases through a capillary wall; formation of kidney filtrate Imsport Description Substances transported Substances transported Transport Description Substances transported Substances transported Transport Description Substances transported Nonpoler, hydrophobic solutes; oygen, setting and the substance through the lipid bility or the plasma concentration. Nonpoler, hydrophobic solutes; oygen, setting and the substance down its description of the substance down its description transport in which cell expenders and the substance across the equilibrium. Nonpoler, hydrophobic solutes; oygen, setting and the substance down its description and setting and the substance down its description and transport in which cell expenders and the substance across the membrane proteins that data a transporters. Nonpoler, hydrophobic solutes; oygen, setting anone across the membra	Simple diffusion Kinetic energy		Net movement of particles (ions, molecules, etc.) from an area of their higher concentration to an area of their lower concentration, that is, along their concentration gradient	Movement of fats, oxygen, carbon dioxide through the lipid portion of the membrane	
Osmosis Kinetic energy Simple diffusion of water through a selectively permeable membrane pores (aquaporins) Movement of water into and out of cells directly through the (bid phase of the membrane or via membrane pores (aquaporins) FILTRATION Hydrostatic pressure Hydrostatic pressure Movement of water and solutes through a semipermeable membrane (either through the plasma mem- brane or between cells) from a region of higher hydrostatic pressure to e, that is, along a pressure gradient Movement of water, nutrients, and gases through a capillary wall; formation of kidney filtrate mapport Description Subblances Transported Subblances mapport Description Subblances Transported Solvent: water in living systems. mapport Description Solvent: water in living systems. Solvent: water in living systems. mapport Description Reverse a collower water on an account in the plasma mem- ter account in the substance through the lipid bilayer of the plasma find bilayer Solvent: water in living systems. Movement of water modecules down its electrochemical gradient invogen introde find bilayer Solvent: water in living systems. Solvent: water in living systems. Movement of water and substance through the lipid bilayer of the plasma information. Solvent: water. Norpoles, hydrophebic solutes: oppoles, solutes, manne acounter through through the plasma alipid bilayer some channes are	Facilitated diffusion	on Kinetic energy	Same as simple diffusion, but the diffusing substance is attached to a lipid-soluble membrane carrier protein or moves through a membrane channel	Movement of glucose and some ions into cells	
FiltRation Hydrostatic pressure Movement of water and solutes through a semipermeable membrane (either through the plasma memory of higher hydrostatic pressure to a region of lower hydrostatic pressure for a mozet Movement of water, nutrients, and gases through a capillary wall; formation of kidney filtrate mapport Exerciption Substances masses Movement of water molecules across a selectively permeable membrane concentration, an area of higher water concentration on a substance through the lipid bilayer of the plasma membrane. Bolvent: water in living systems. Transport in mapport in fituation membrane intervent in through channels that spen a lipid bilayer, some channels are gated intrade through channels that spen a lipid bilayer, some channels are gated. Nonpolar, hydrophobic solute: caygan, carbon dioxids, and alregers, taty acids, and allochels: annonala. Polar or charged solutes: glucose, fructose. gated bilayer is aubstance down its electrochemical gradient through channels that spen a lipid bilayer, some channels are gated. Nonpolar, hydrophobic solute: caygan, carbon dioxids, and alregers, taty acids, and allochels: annonala. Polar or charged solutes: Were. Transport in which cell expende energy to mother of a substance across the membrane signatist its concentration gradient by pumps. Innamebrane proteins that use energy supplied by hydrobysis of AT. The substance in the substances across the membrane signapor in a substance in opporation directions across the membrane signapor in a substance in oppopalit directions across	Osmosis	Kinetic energy	Simple diffusion of water through a selectively permeable membrane	Movement of water into and out of cells directly through the lipid phase of the membrane or via membrane pores (aquaporins)	
Hydrostatic pressure Movement of water and solutes through a semipermeable membrane distribution of kidney filtrate Movement of water, nutrients, and gases through a capillary wall; formation of kidney filtrate ansport Description Substances region of lower hydrostatic pressure that is, along a pressure gradient Substances Transporta models Movement of water molecules across a selectively permeable membrane concentration. Substances Transporta Movement of water molecules across a selectively permeable membrane concentration. Solvent: water in living systems. Diffusion through he equilibrium. Passive diffusion of a substance through the lipid bilayer of the plasma membrane. Solvent: water in living systems. Diffusion through the insport Passive diffusion of a substance down its electrochemical gradient through channels that span a lipid bilayer: some channels are gated. Solvent: water in living systems. Diffusion through the insport Transport in which across the membrane gradeties, and targen figur selfs. Solvent: water in living systems. Diffusion through the insport Transport of a substance down its cincentration gradient until it reaches equilibrium. Solvent: water in living systems. Diffusion through the insport in which ele seponde encry to move a substance across the membrane gainst its concentration gradient until it meaches through as that encry to majon through transmembrane proteles that ele system servery to rea substance across	FILTRATION				
Image of the constraints Substances transport mmos/s Movement of water molecules across a selectively perneable membrane from an area of higher water concentration to an area of lower water concentration. Solvent: water in living systems. filesion Random mixing of molecules or lons due to heir kinetic energy. A action discide, and nitrogen; tatty acids, siteroids, and nitrogen; tatty acids, siteroi		Hydrostatic pressure	Movement of water and solutes through a semipermeable membrane (either through the plasma mem- brane or between cells) from a region of higher hydrostatic pressure to a region of lower hydrostatic pressure, that is, along a pressure gradient	Movement of water, nutrients, and gases through a capillary wall; formation of kidney filtrate	
Decision Movement of water molecules across a selectively permeable membrane from an area of higher water concentration to an area of lower water control of molecules or long due to their kinatic energy. A substance diffusion of a substance through the lipid bilayer of the plasma membrane. Solvent: water in living systems. Oliffusion hrough the ipid bilayer Passive diffusion of a substance through the lipid bilayer of the plasma membrane. Nonpolar, hydrophobic solutes: oxygen, carbon dioxide, and nitrogen; fatty acids, steroids, and fat-soluble vitamins; glycerol, small alcohols; ammonia. Oliffusion hrough through hrough membrane channels Passive diffusion of a substance down its electrochemical gradient through through the lipid bilayer; some channels are gated. Nonpolar, hydrophobic solutes: oxygen, carbon dioxide, and nitrogen; fatty acids, steroids, and fatt-soluble vitamins; by Polar or charged solutes; glucose, fructose, galactose, and some vitamins. Itilitied fitusion frained by number of available transporters. Polar or charged solutes. Polar or charged solutes; glucose, fructose, galactose, and some vitamins. Na*, K*, Ca*, H*, F, OT-, and other ions. Primary acitive transport of two substances across the membrane using energy supplied by a Na* or H* concentration gradient maintained by primary acitive trans	Insport	Description		Substances Transported	
Total all a bill in table of indexingtion water controllation and all all as of index interventionsfusionProduction making of molecules or ions due to their kinetic energy. A adultation making of molecules or ions due to their kinetic energy. A adultation making of molecules or ions due to their kinetic energy. A adultation making of molecules or ions due to their kinetic energy. A adultation making of molecules or ions due to their kinetic energy. A adultation of a substance through the lipid bilayer of the plasma membrane.Nonpolar, hydrophobic solutes: oxygen, carbon dixide, and fat-soluble vitamins; glycerol, samal alcohols; ammonia. Polar molecules: water and urea.Diffusion intrough the probability of a substance down its electrochemical gradient through the plasma membrane channelsSmall inconsint solutes, mainly ions: K*, C1, Na*, and Ca*.Diffusion through the probability of a substance down its concentration gradient via transmotrane proteins that act as transporters; mapport in which cell expends energy to move a substance across the membrane proteins that act as transporters; mapport in which cell expends energy to move a substance across the membrane gradient through transmembrane proteins that act as transporters; mapport are is limited by number of available transporters; mapport in which cell expends energy to move a substance across the membrane brane proteins that act as transporters; mapport in which cell expends energy to move a substance across the membrane using energy supplied by AN* of AP.Polar or charged solutes: Polar or charged solutes.Secondary active transport as usbatances across the membrane using energy supplied by AN* of AP.Na*, K*, Ca**, H*, OI*, and other ions.Secondary active transport as usubstances i	mosis	Movement of water molecu	les across a selectively permeable membrane	Solvent: water in living systems.	
Diffusion through the ipid bilayerPassive diffusion of a substance through the lipid bilayer of the plasma membrane.Nonpolar, hydrophobic solutes: oxygen, carbo dix/de, and httoger, fatty acids, sterids, and fat-soluble vitamins; glycerol, small acohols; amonia.Diffusion through the membrane channels that span a lipid bilayer; some channels are gated.Small inorganic solutes; mainy lons: K*, C1, Na*, and Ca**. Water.Diffusion through the membrane channels that acids that acid a transporters, maximum diffusion rate is limited by number of available transporters, maximum diffusion rate is limited by number of available transporters. membrane galants its concentration gradient through transmembrane proteins that act as transporters. membrane of a substance across the membrane galant its concentration gradient through transmembrane gradient by pumps; transmembrane proteins that use energy to move a substance across the membrane gradient by pumps; transmembrane proteins that use energy supplied by and the concentration gradient maintained by primary active transport of two substances across the membrane using energy substance in opossite directions across that bud from the substance in opossite inderection across the membrane.Na*, K*, Ca**, H*, I*, Ot*, and other lons.Secondary solve transport in solve transport in solve transport in solve transport in a vesicle containing ligands. endocytosisNot cells. Movement of substances into or out of a cell in vesicles that bud from the splasm membrane, requires energy supplied by ATP.Endocytosis PhagocytosisMovement of substances into or out of a	fusion	concentration. Random mixing of molecul substance diffuses down a equilibrium.	es or ions due to their kinetic energy. A concentration gradient until it reaches		
ContractionPassive diffusion of a substance down its electroleminal gradientSina modules, interruptintrolugin framePressive diffusion of a substance down its concentration gradient via transmembrane proteins that act as transporters; maximum diffusion rate is limited by number of available transporters.Polar or charged solutes; fluctose, galactose, and Ca**.threadPassive movement of a substance down its concentration gradient via transmembrane proteins that act as transporters.Polar or charged solutes; fluctose, galactose, and Ca**.threadPressive movement of a substance across the membrane against its concentration gradient through transmembrane proteins that act as transporters; maximum transport rate is limited by number of available transporters.Polar or charged solutes.Primary active transportTransport of a substance across the membrane against its concentration gradient by pumps; transmembrane proteins that use energy supplied by number of available transporters.Na*, K*, Ca*, H*, IT, CI*, and other ions.Secondary active transport pumps. Antiporters move Na* (or H*) and another substance in opposite directions across the membrane; symporters move Na* (or H*) and another substance in the same direction across the membrane.Antiport: Ca*, H* out of cells.Bradocytosis PhagocytosisMovement of a solid particle into a cell in vesicles.Ligands: transferrin, low-density lipoproteins (LDLs), some vitamins, certain hormones, and antibodies.Phagocytosis"Cell eating"; movement of a cell in vesicles.Electering, viruses, and aged or dead cells.Phagocytosis"Cell eating"; movement of a solid particle into a cell by infolding of plasma membrane to	Diffusion hrough the pid bilayer	Passive diffusion of a substance through the lipid bilayer of the plasma membrane. Nonpolar, hydrophobic solute: carbon dioxide, and nitrogen; steroids, and fat-soluble vitami small alcohols; ammonia. Polar molecules; water and ur			
Initiated fiftsionPassive movement of a substance down its concentration gradient via transmembrane proteins that act as transporters; mansport in which cell expends energy to move a substance across the membrane against its concentration gradient through transmembrane proteins that act as transporters; mansport active transporters; mansport of a substance across the membrane against its concentration gradient by pumps; transmembrane proteins that act as transporters.Polar or charged solutes: galactose, and some vitamins.Primary active transport of a substance across the membrane against its concentration gradient by pumps; transmembrane proteins that use energy supplied by hydrolysis of ATP.Na*, K*, Ca ²⁺ , H*, I ⁻ , Cl ⁻ , and other ions.Secondary active transport active transport of two substances across the membrane using energy supplied by a Na* or H* concentration gradient maintained by primary active transport of substances in or or ut of a cell in vesicles that bud from the plasma membrane; requires energy supplied by ATP.Antiport: Ca ²⁺ , H+, I ⁻ , Cl ⁻ , and other ions.amsport In siclesMovement of substances into or out of a cell in vesicles that bud from the plasma membrane; requires energy supplied by ATP.Ligands: transferrin, low-density lipoproteins (LDLs), some vitamins, certain hormones, and antibodies.Phagocytosis"Cell eating": movement of a solid particle into a cell after pseudopods engulf it to form a phagosome.Bacteria, viruses, and aged or dead cells.Phagocytosis"Cell drinking": movement of extracellular fluid into a cell by infolding of plasma membrane to form a pinocytic vesicle.Solutes in extracellular fluid.Phagocytosis"Cell denting": movement of extracellular fluid in	hrough nembrane channels	through channels that spar	a a lipid bilayer; some channels are gated.	ions: K^+ , Cl^- , Na^+ , and Ca^{2+} . Water.	
three ansportTransport in which cell expends energy to move a substance across the membrane against its concentration gradient through transmembrane proteins that act as transporters; maximum transport rate is limited by number of available transporters.Polar or charged solutes.Primary active transportTransport of a substance across the membrane against its concentration gradient by pumps; transmembrane proteins that use energy supplied by hydrolysis of ATP.Na*, K*, Ca ²⁺ , H*, I ⁻ , CI ⁻ , and other ions.Secondary active transportCoupled transport of two substances across the membrane using energy supplied by a Na* or H* concentration gradient maintained by primary active transport pumps. Antiporters move Na* (or H*) and another substance in opposite directions across the membrane: symporters move Na* (or H*) and another substances into or out of a cell in vesicles that bud from the plasma membrane; requires energy supplied by ATP.Na*, K*, Ca ²⁺ , H*, I ⁻ , OL ⁻ , and other ions.Endocytosis endiated endocytosisMovement of substances into or out of a cell in vesicles that bud from the plasma membrane; requires energy supplied by ATP.Ligands: transferrin, low-density lipoproteins (LDIs), some vitamins, certain hormones, and antibodies.Phagocytosis endiated endocytosis"Cell enting"; movement of a solid particle into a cell after pseudopods enguli it to form a phagosome.Solutes in extracellular fluid.Pinocytosis"Cell drinking"; movement of extracellular fluid into a cell by infolding of plasma membrane; contents into the extracellularSolutes in extracellular fluid.Phagocytosis"Cell drinking"; movement of substances out of a cell in secretory vesicles that fuse with plasma membran	cilitated fusion	Passive movement of a substance down its concentration gradient via Polar or charged solutes: transmembrane proteins that act as transporters; maximum diffusion rate is limited by number of available transporters.			
Primary active transportTransport of a substance across the membrane against its concentration gradient by pumps; transmembrane proteins that use energy supplied by hydrolysis of ATP.Na*, K*, Ca ^{2*} , H*, I ⁻ , CI ⁻ , and other ions.Secondary active transportCoupled transport of two substances across the membrane using energy supplied by a Na* or H* concentration gradient maintained by primary subplied by a Na* or H* concentration gradient maintained by primary subplied by a Na* or H* concentration gradient maintained by primary subplied by a Na* or H* concentration gradient maintained by primary substance in oposite directions across the membrane using energy subplied by a Na* or H* concentration gradient maintained by primary substance in oposite directions across the membrane is more Na* (or H*) and another substances into or out of a cell in vesicles that bud from the plasma membrane; requires energy supplied by ATP.Na*, K*, Ca ^{2*} , H* out of cells.EndocytosisMovement of substances into or out of a cell in vesicles. Ligand-receptor complexes trigger infolding of a clathrin-coated pit that endocytosisLigands: transferrin, low-density lipoproteins. (LDLs), some vitamins, certain hormones, and antibodies.Phagocytosis"Cell eating"; movement of a solid particle into a cell after pseudopods engult it to form a phagosome.Bacteria, viruses, and aged or dead cells.Pinocytosis"Cell drinking"; movement of extracellular fluid into a cell by infolding of plasma membrane to form a pinocytic vesicle.Solutes in extracellular fluid.ExocytosisMovement of substances out of a cell in secretory vesicles that fuse with the plasma membrane and release their contents into the extracellularNeurotransmitters, hormones, and digestive enzy	tive Insport	Transport in which cell exp membrane against its conc proteins that act as transpo number of available transp	ends energy to move a substance across the entration gradient through transmembrane orters; maximum transport rate is limited by orters.	Polar or charged solutes.	
Secondary active transport Coupled transport of two substances across the membrane using energy supplied by a Na* or H* concentration gradient membrane by primary active transport pumps. Antiporters move Na* (or H*) and another substance in oppositile directions across the membrane; symporters move Na* (or H*) and another substance in oppositile directions across the membrane; symporters move Na* (or H*) and another same direction across the membrane. Antiport: Ca ^{2*} , H* out of cells. ansport In sicles Movement of substances into or out of a cell in vesicles that bud from the plasma membrane; requires energy supplied by ATP. Ligands: transferrin, low-density lipoproteins (LDLs), some vitamins, certain hormones, and antibodies. Preceptor- mediated endocytosis Cell eating*; movement of a solid particle into a cell after pseudopods engult it to form a phagosome. Bacteria, viruses, and aged or dead cells. Pinocytosis "Cell drinking*; movement of extracellular fluid into a cell by infolding of plasma membrane and release their contents into the extracellular fluid. Solutes in extracellular fluid.	Primary active ransport	Transport of a substance a gradient by pumps; transm hydrolysis of ATP.	cross the membrane against its concentration embrane proteins that use energy supplied by	Na ⁺ , K ⁺ , Ca ²⁺ , H ⁺ , I ⁻ , CI ⁻ , and other ions.	
Image: Inspired inspired inspired inspired by an embrane; requires energy supplied by ATP. Movement of substances into a cell in vesicles that bud from the plasma membrane; requires energy supplied by ATP. Endocytosis Movement of substances into a cell in vesicles. Ligands: transferrin, low-density lipoproteins (LDLs), some vitamins, certain hormones, and antibodies. Phagocytosis "Cell eating"; movement of a solid particle into a cell after pseudopods engulf it to form a phagosome. Bacteria, viruses, and aged or dead cells. Pinocytosis "Cell drinking"; movement of extracellular fluid into a cell by infolding of plasma membrane to form a pinocytic vesicle. Solutes in extracellular fluid. Exocytosis Movement of substances out of a cell in secretory vesicles that fuse with the plasma membrane and release their contents into the extracellular fluid digestive enzymes. Neurotransmitters, hormones, and digestive enzymes.	Secondary active transport	Coupled transport of two sissipplied by a Na ⁺ or H ⁺ conductive transport pumps. An substance in opposite direct move Na ⁺ (or H ⁺) and ano the membrane.	ubstances across the membrane using energy ncentration gradient maintained by primary tiporters move Na' (or H') and another ztions across the membrane; symporters ther substance in the same direction across	Antiport: Ca ²⁺ , H ⁺ out of cells. Symport: glucose, amino acids into cells.	
mediated endocytosis forms a vesicle containing ligands. (LDLs), some vitamins, certain hormones, and antibodies. Phagocytosis "Cell eating"; movement of a solid particle into a cell after pseudopods engulf it to form a phagosome. Bacteria, viruses, and aged or dead cells. Pinocytosis "Cell drinking"; movement of extracellular fluid into a cell by infolding of plasma membrane to form a pinocytic vesicle. Solutes in extracellular fluid. Exocytosis Movement of substances out of a cell in secretory vesicles that fuse with the plasma membrane and release their contents into the extracellular fluid. Neurotransmitters, hormones, and digestive enzymes.	nsport In sicles Endocytosis Receptor-	Movement of substances in plasma membrane; require Movement of substances in Ligand-receptor complexes	to or out of a cell in vesicles that bud from the s energy supplied by ATP. no a cell in vesicles. : trigger infolding of a clathrin-coated pit that	Ligands: transferrin, low-density lipoproteins	
Pinocytosis "Cell drinking"; movement of extracellular fluid into a cell by infolding of plasma membrane to form a pinocytic vesicle. Solutes in extracellular fluid. Exocytosis Movement of substances out of a cell in secretory vesicles that fuse with the plasma membrane and release their contents into the extracellular fluid. Neurotransmitters, hormones, and digestive enzymes.	mediated endocytosis Phagocytosis	forms a vesicle containing	ligands. a solid particle into a cell after pseudopods	(LDLs), some vitamins, certain hormones, and antibodies. Bacteria, viruses, and aged or dead cells.	
Exocytosis Movement of substances out of a cell in secretory vesicles that fuse with the plasma membrane and release their contents into the extracellular fluid. Neurotransmitters, hormones, and digestive enzymes.		"Cell drinking"; movement of plasma membrane to form	me. of extracellular fluid into a cell by infolding of a pinocytic vesicle.	Solutes in extracellular fluid.	
	Pinocytosis	passing monorario to form	ut of a cell in secretory vesicles that fuse with	Neurotransmitters bormones and	

ACTIVE TRANSPORT:

As and example: Cells keep more K+ inside. The simple diffusion will cause K+ to move out of the cell. To maintain a constant and high

K+ concentration inside the cell, K+ must be transported inside by other type of transport that can move K+ against a concentration gradient. Movement of particles against their concentration, electrical or pressure gradient is known as active transport. In this type of transport energetic compounds (ATP) are needed. The need for ATP could be by direct breakdown of energetic compounds by the ATP-ase activity of the carrier in *Primary Active Transport*, or by an indirect use of ATP as in *Secondary Active Transport*. All active transport systems are equipped with carrier proteins that move transported substances across membranes.

- PRIMARY ACTIVE TRANSPORT:

Examples of Primary active transport:

Na+ - K+ pump: This pump is able to expel 3 molecules of Na+ outside the cell and transport 2 K+ inside by a use of 1 ATP molecule. The carrier protein of this pump has 3 receptive sites for Na+ and 2 receptive sites for K+. Binding of 3 Na+ to the carrier protein in the inside and 2 K+ at the outside will cause activation of ATP-ase that split ATP into ADP and P. The liberated energy will cause conformational change in the carrier protein which results in extruding the 3 Na+ to the outside and transport of 2 K+ to the inside.

The importance of this pump is to maintain concentration difference of Na+ and K+ across plasma and helps in the *regulation of cell volume* by controlling concentration of solutes inside the cell. The presence of high concentration of negatively charged proteins inside tends to attract positive ions. These particles tend to cause osmosis of water to the interior of the cell. If this is not controlled, the cells will swell until they burst. The presence of the pump that expels 3 particles outside for 2 transported inside represents a net loss of ions out of the cell, which controls water osmosis to the cell. In addition to that cell membrane is less permeable to Na+ than K+, which gives Na+ more tendency to remain outside the cell and reduce water osmosis.

By expelling 3 positive ions for 2 transported inside, this pump will create positivity outside the cell and leaving deficit of positive ions inside of about. This *electrogenic* nature of the pump will create a potential difference of about (- 4mv) (if works alone) between the inside and the outside.

Ca++ pump: cells maintain very low Ca++ concentration in their cytosol (10,000 times less of the concentration in ECF). The low Ca++ concentration is maintained by activity of two types of Ca++ pumps. One is found at plasma membrane and expels Ca++ to the ECF. The other is found on membranes of internal vesicular organelles such as sarcoplasmic reticular of muscle cells and mitochondria of most cells. By

reducing Ca++ ions in the sarcoplasm (cytoplasm of muscle cells) by Ca++ pumps this will induce relaxation of muscle cells.

H+ **pump**: Some cells are specialized in expelling H+, such as parietal cells of gastric mucosa, intercalated cells of the distal tubules and cortical collecting ducts

in the kidney. The presence of H+ pumps at the lumenal side of plasma membrane in the gastric mucosa is responsible for decreasing the pH of gastric juice. While H+ of the lower parts of the nephron are responsible for controlling H+ concentration in the body.

- SECONDARY ACTIVE TRANSPORT:

The high Na+ concentration gradient between the cytosol and the extracellular fluid is maintained by the activity of Na+ - K+ ATP-ase pump. Cells are profiting from the tendency of Na+ to diffuse inside the cells and transport other molecules against their concentration gradient along with Na+ in case of secondary active **co-transport** or expelling other particles against their concentration gradient in exchange as in case of secondary active **counter-transport**. In this kind of transport cells are using ATP, but this use is to create a concentration gradient for Na+ (by the activity of Na+ - K+ pump). Then cells can use this concentration gradient to transport certain particles against their concentration gradient across membranes. The use of ATP is NOT direct as in pumps (it's indirect use).

Examples of **co-transport**:

Glucose and aminoacids are transported in the enterocytes (intestinal epithelial cells) during absorption by this mean of secondary active transport. The presence of low Na+ inside the enterocytes by the activity of Na+ - K+ pump at the basolateral membrane will create a driving force for movement of Na+ from intestinal lumen. Carriers at the lumenal membrane will not transport Na+ but only with a particle of glucose or aminoacid. Depends on the type of carrier, many protein carriers have been identified. For aa transport at least 5 types of carriers have been identified. As a result of this transport aminoacids and glucose are transported along with Na+ from the intestinal lumen and these carriers are specific.

Other ions can also be transported by co-transport system, such as Fe++, Cl-, iodine and urate.

Examples of counter-transport:

Transport of Ca++ by secondary active transport:

In addition to its active transport by Ca++ pumps, Ca++ can also bind to specialized carrier that can move Na+ inside the cell in exchange with Ca++. This kind of transport is found in most cells including heart muscle.

Transport of H+ by secondary active transport: This kind occurs in proxinat tubules where Na+ moves from the lumen to the tubular cells in exchange for H+ which is counter-transported into the lumen.

رسالة من الفريق العلمي:

For any feedback, scan or click the code.

Versions	Slide #	Before	After
V0 → V1	11	Definition of pinocytosis	Definition corrected Prof's handout added
V1 → V2			