

## PHYSICS DEPARTMENT Fall SEMESTER (2024 – 2025)

# PHYSICS FOR MEDICAL AND DENTAL Students (0342105)

**Textbook:**"Physics"Douglas C. Giancoli, "**PHYSICS: PRINCIPLES WITH APPLICATIONS. Seventh Global Edition,** Pearson, 2015

# **Recommended References:**

1. Joseph W. Kane and Morton M. Sternheim, "Physics", 3rd Edition, (John Wiley & Sons, 1988).

2. Raymond A. Serway and John W. Jewett Jr., "**Physics For Scientists and Engineers with Modern Physics**" 10<sup>th</sup> Edition, (Cengage, USA, 2019).

## Course Content:

| Chapter | Sections                                                              | Suggested<br>Problems   |
|---------|-----------------------------------------------------------------------|-------------------------|
| 1       |                                                                       | 17 21 22 24             |
| 1       | Introduction, Measurement, Estimating                                 | 17, 21, 33, 34,         |
|         | 1.5 Units, Standards, and the SI System                               | 48                      |
|         | 1.0. Converting Units                                                 |                         |
| 2       | Describing Motion: Kinematics in One Dimension                        | 5 7 0 11 17             |
| 2       | 2.1 Reference Frames and Displacement                                 | 3, 7, 9, 11, 17, 20, 21 |
|         | 2.1 Average Velocity                                                  | 20, 21                  |
|         | 2.2 Average velocity<br>2.3 Instantaneous Velocity                    |                         |
|         | 2.5 Instantaneous velocity                                            |                         |
| 2       | Vinometics in Two Dimensions: Vestors                                 | 1 3 8 12                |
| 5       | 3.1 Vectors and Scalars                                               | 1, 5, 6, 12             |
|         | 3.2 Addition of Vectors - Graphical Methods                           |                         |
|         | 3.3 Subtraction of Vectors and Multiplication of a Vector by a Scalar |                         |
|         | 3.4 Adding Vectors by Components                                      |                         |
| 4       | Dynamics: Newton's Laws of Motion                                     |                         |
| -       | 4 1 Force                                                             | 3 11 28 31              |
|         | 4.2 Newton's First Law of Motion                                      | 36 37 45 47             |
|         | 4 3 Mass                                                              | 61                      |
|         | 4.4 Newton's Second Law of Motion                                     |                         |
|         | 4.5 Newton's Third Law of Motion                                      |                         |
|         | 4.6 Weight - the Force of Gravity: and the Normal Force               |                         |
|         | 4.7 Solving Problems with Newton's Laws: Free-Body Diagrams           |                         |
|         | 4.8 Problems Involving Friction, Inclines                             |                         |
| 6       | Work and Fnorgy                                                       |                         |
| U       | 6.1 Work Done by a Constant Force                                     | 9 10 18 23              |
|         | 6.3 Kinetic Energy and the Work-Energy Principle                      | 28 36 41 44             |
|         | 6.4 Gravitational Potential Energy (Elastic Energy is excluded)       | 55, 57                  |
|         | 6.5 Conservative and Nonconservative Forces                           |                         |
|         | 6.6 Mechanical Energy and its Conservation                            |                         |
|         | 6.7 Problem Solving Using Conservation of Mechanical Energy           |                         |
|         | 6.8 Other Forms of Energy;                                            |                         |
|         | 6.9 Energy Conservation with Dissipative Forces: Solving Problems     |                         |
|         | 6.10 Power                                                            |                         |
| 7+8     | Ch7: Linear Momentum                                                  | Ch7:                    |
|         | 7.8 Center of Mass (CM)                                               | 46, 51, 52, 53          |
|         | 7.9 CM for the Human Body                                             | Ch8:                    |
|         | Ch8: Rotational Motion                                                | 24, 25, 27              |
|         | 8.4 Torque                                                            |                         |
| 9       | Static Equilibrium; Elasticity and Fracture                           | 4, 5, 16, 17, 18,       |
|         | 9.1 The Conditions for Equilibrium                                    | 32, 38, 39, 43,         |
|         | 9.2 Solving Statics Problems                                          | 46, 50                  |
|         | 9.3 Applications to Muscles and Joints                                |                         |
| I       | 1.9.4 Stability and Balance                                           |                         |

| 9.5 Elasticity; Stress and Strain |  |
|-----------------------------------|--|
| 9.6 Fracture                      |  |

| 10 | Fluide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 10 | <ul> <li>10.1 Phases of Matter</li> <li>10.2 Density and Specific Gravity</li> <li>10.3 Pressure in Fluids</li> <li>10.4 Atmospheric Pressure and Gauge Pressure</li> <li>10.5 Pascal's Principle</li> <li>10.6 Measurements of Pressure; Gauges and the Barometer</li> <li>10.7 Buoyancy and Archimedes' Principle</li> <li>10.8 Fluids in Motion; Flow Rate and the Equation of Continuity</li> <li>10.9 Bernoulli's Equation</li> <li>10.10 Applications of Bernoulli's Principle: Torricelli, Airplanes, Blood</li> <li>Flow</li> <li>10.12 Flow in Tubes: Poiseuille's Equation, Blood Flow</li> </ul> | 5, 10, 11, 18,<br>20, 26, 27, 38,<br>48, 54, 56, 60,<br>88      |
| 23 | Light: Geometric Optics<br>23.1: The Ray Model of Light<br>23.4: Index of Refraction<br>23.5: Refraction: Snell's Law<br>23.6: Total Internal Reflection; Fiber Optics<br>23.7: Thin Lenses; Ray Tracing<br>23.8: The Thin Lens Equation                                                                                                                                                                                                                                                                                                                                                                    | 25, 26, 28, 31,<br>34, 36, 40, 42,<br>45, 48, 50, 53,<br>78, 79 |
| 30 | Nuclear Physics and Radioactivity30.1 Structure and Properties of Nucleus30.3 Radioactivity30.8 Half-Life and Rate of Decay30.9 Calculations Involving Decay Rates and Half-Life                                                                                                                                                                                                                                                                                                                                                                                                                            | 2, 37, 43, 42,<br>46, 49                                        |
| 31 | Nuclear Energy; Effects and Uses of Radiation<br>31.4 Passage of Radiation Through Matter; Biological Damage<br>31.5 Measurement of Radiation - Dosimetry<br>31.6 Radiation Therapy<br>31.8 Emission Tomography: PET and SPECT<br>31.9 Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging<br>(MRI)                                                                                                                                                                                                                                                                                             | 38, 40, 41, 44,<br>46                                           |

Coordinators:

- Dr. Riad Shaltaf
   e-mail: <u>r.shaltaf@ju.edu.jo</u>
   Office: Physics department, office no: 112
- Dr. Mohammad Hussein

   *e-mail*: <u>m.hussein@ju.edu.jo</u>
   Office: Physics department, office no: 008

## Very Important:

- The suggested problem numbers are taken from the seventh global edition. It is possible that these problems do not exist in earlier editions or may be listed with different problem numbers.
- Students across all sections are advised to frequently review the announcements posted on the <u>course</u> <u>e-learning website:</u>

https://elearning.ju.edu.jo/course/view.php?id=2660

- Attendance Policy: Students are required to be present in their respective sections at the assigned times and locations. If absences exceed 15% of the total teaching hours, students will receive <u>a failing</u> grade of "F".
- The distribution of exam weights is as follows: **30%** for the First Exam, **20%** for the Second Exam, and **50%** for the Final Exam. Your instructor, along with the course e-learning website, will provide you with the dates for each examination.