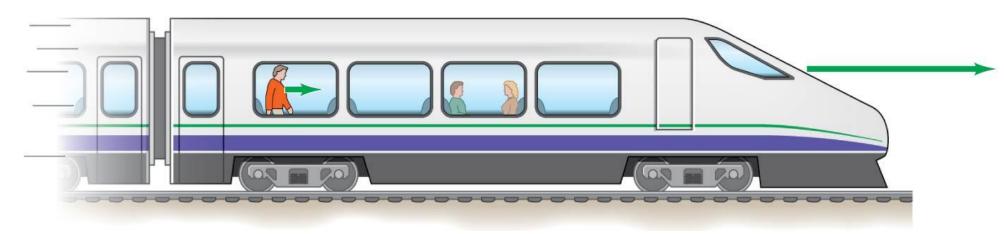
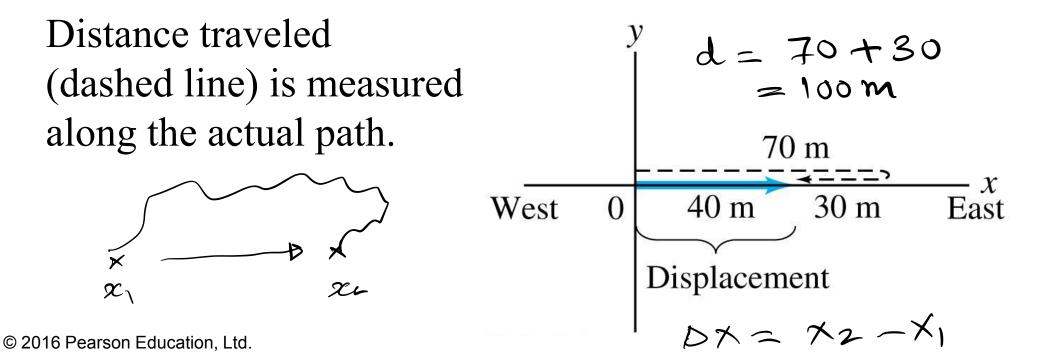
Chapter 2 Describing Motion: Kinematics in One Dimension


Contents of Chapter 2

- Reference Frames and Displacement
- Average Velocity
- Instantaneous Velocity
- Acceleration

2-1 Reference Frames and Displacement

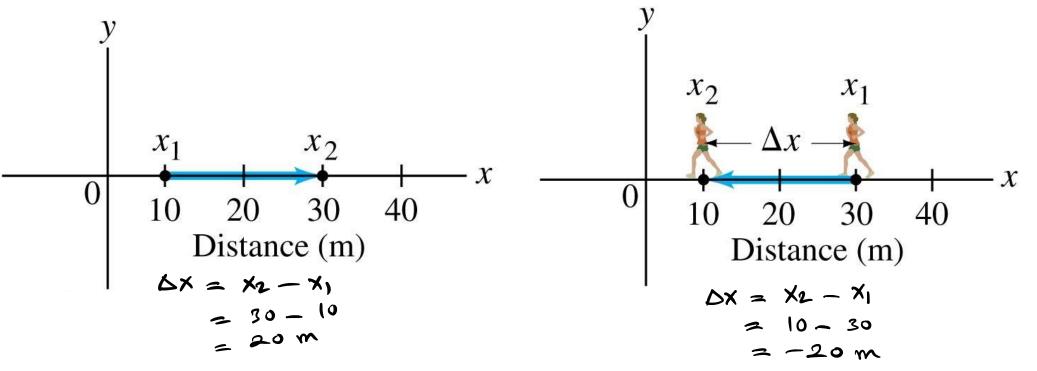
Any measurement of position, distance, or speed must be made with respect to a reference frame.


For example, if you are sitting on a train and someone walks down the aisle, their speed with respect to the train is a few kilometers per hour, at most. Their speed with respect to the ground is much higher.

2-1 Reference Frames and Displacement

We make a distinction between distance and displacement.

Displacement (blue line) is how far the object is from its starting point, regardless of how it got there.



= 40 - 0 = 40m

2-1 Reference Frames and Displacement

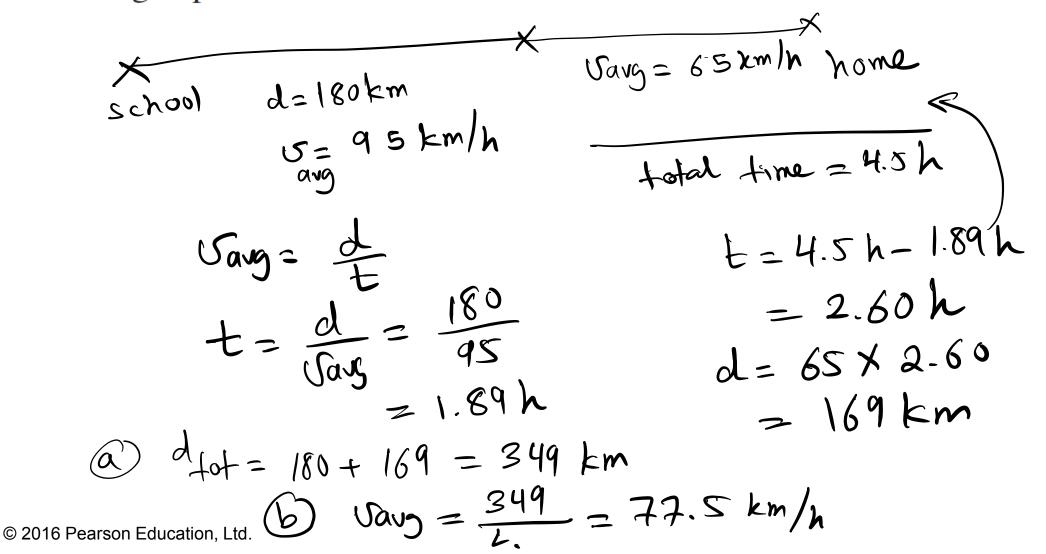
The displacement is written: $\Delta x = x_2 - x_1$

Left: Displacement is positive. Right: Displacement is negative.

2-2 Average Velocity

Speed: how far an object travels in a given time interval

Velocity includes directional information: $\frac{1}{\text{Var}} = \frac{\text{displacement}}{\text{time elapsed}} = \frac{\text{final position} - \text{initial position}}{\text{time elapsed}}$ vector unif km/h m/s quantity


5. (I) A bird can fly 25 km/h. How long does it take to fly 3.5 km?

Uarg = 25 km/h

$$d = 3.5 \text{ km}$$

$$V_{avg} = \frac{d}{t}$$

25 = $\frac{3.5}{t}$ \implies $t = \frac{3.5}{25} = 0.14 h$

7. (II) You are driving home from school steadily at 95 km/h for 180 km. It then begins to rain and you slow to 65 km/h. You arrive home after driving 4.5 h. (a) How far is your hometown from school? (b) What was your average speed?

a particle moves from proint A -> B with average speed af 20 m/s and back to point A with average speed of 30 m/s. a) average velocity b) a speed (a) $\widehat{V}_{avg} = \frac{\Delta x}{t} = \frac{0}{t} =$ distance x d time A e d b Varg = $S_{avg} = \frac{d+d}{\pm_1 + \pm_2}$ $t_1 = \frac{d}{\sqrt{avg_2}}$ $t_2 = \frac{d}{\sqrt{avg_2}}$ $Varg = \frac{2a}{\sqrt{arg_1}} + \frac{2}{\sqrt{arg_2}} = \frac{2}{\frac{1}{1} + \frac{1}{30}}$ 24 m/s

9. (II) A person jogs eight complete laps around a 400-m track in a total time of 14.5 min. Calculate (*a*) the average speed and (*b*) the average velocity, in m/s.

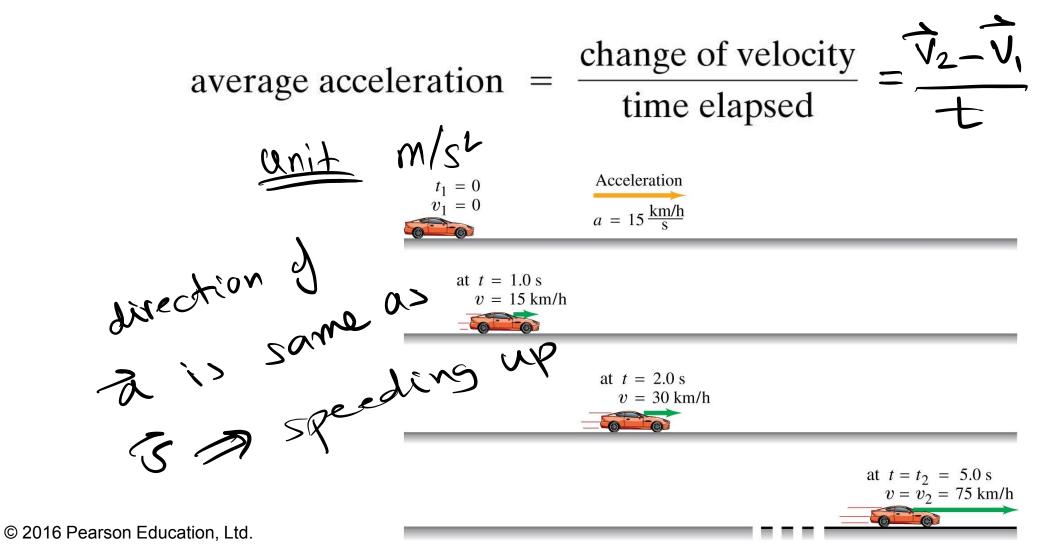
fotal distance =
$$400 \times 8 = 3200 \text{ m}$$

fotal fine in seconds = 14.5×60
= 870 s

(a)
$$V_{avg} = \frac{d}{t} = \frac{3200}{870} = 3.67 \text{ m/s}$$

(b) $V_{avg} = \frac{\Delta x}{t} = 0$

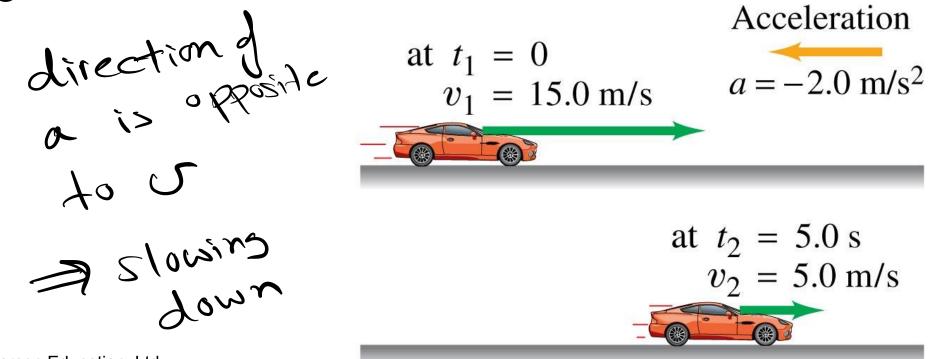
11. (II) A car traveling 95 km/h is 210 m behind a truck traveling 75 km/h. How long will it take the car to reach the 95 hm/h truck? 75 km/h 210M 20 km/n km/h 210 m $\frac{210m}{5.5} = 38.9$ © 2016 Pearson Education, Ltd.


Another solution 75 km/h 95 km/h 210m (JL) $\sqrt{}$ from X isat distance 210+ #22 0 Origin d= vit = 210+ v2t 95 km/h - 3.6 = 26.3 $\mathcal{O}_{1} =$ 75 km/h - 3.6 = 20.8 52 = 26.3t = 210 + 20.8t 26.3t - 20.8t = 2105.5 t= 210 $t = \frac{210}{5.5} = 38.9 \text{ s}$

instantenous velocity = velocity
=
$$\overrightarrow{U}$$
 = velocity at a certain
instantenous speed = speed
= \overrightarrow{U}
= speed at certain
moment
moment

 $75 \div 3.6$ = 20.8

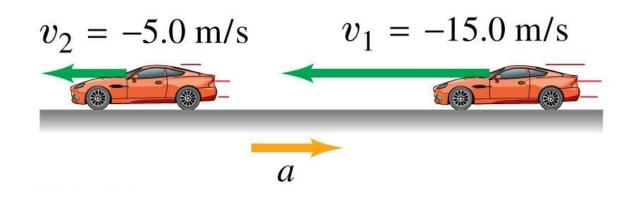
2-4 Acceleration


Acceleration is the rate of change of velocity.

2-4 Acceleration

Acceleration is a vector, although in one-dimensional motion we only need the sign.

The previous image shows positive acceleration; here is negative acceleration:



2-4 Acceleration

There is a difference between negative acceleration and deceleration:

Negative acceleration is acceleration in the negative direction as defined by the coordinate system.

Deceleration occurs when the acceleration is opposite in direction to the velocity.

17. (I) A sports car accelerates from rest to 95 km/h in 4.3 s. What is its average acceleration in m/s^2 ?

J.

$$\widehat{\alpha}_{avg} = \frac{\widehat{V}_2 - \widehat{V}_1}{t}$$

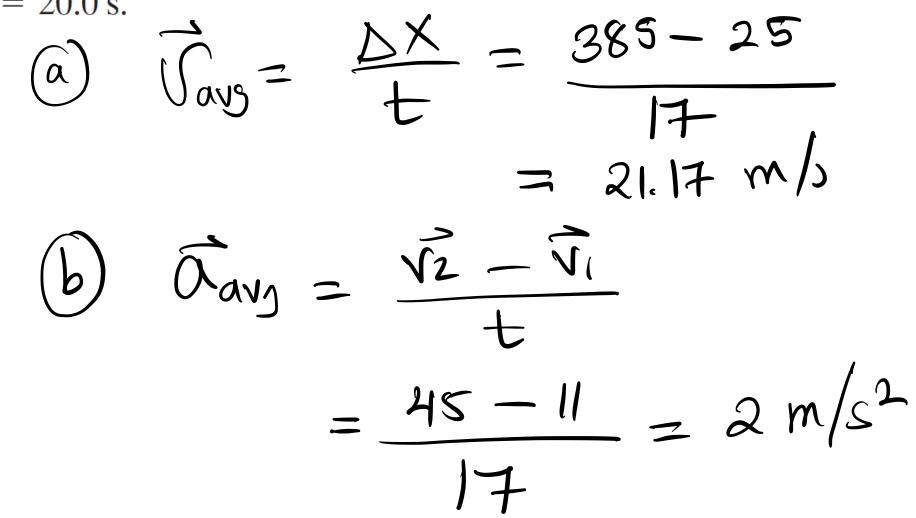
$$= 26.3 - 0$$

$$4.3$$

= 6.11 m/s²

20. (II) At highway speeds, a particular automobile is capable of an acceleration of about 1.8 m/s^2 . At this rate, how long does it take to accelerate from 65 km/h to 120 km/h?

$$\vec{v}_{1} = 65 \text{ km/h} = 18.1 \text{ m/s}$$


$$\vec{v}_{2} = 120 \text{ km/h} = 33.3 \text{ m/s}$$

$$\vec{a} = \frac{\vec{v}_{2} - \vec{v}_{1}}{t} = \frac{15.2}{t}$$

$$1.8 = \frac{33.3 - 18.1}{t} = \frac{15.2}{t}$$

$$t = 8.5 \text{ s}$$

21. (II) A car moving in a straight line starts at x = 0 at t = 0. It passes the point x = 25.0 m with a speed of 11.0 m/s at t = 3.00 s. It passes the point x = 385 m with a speed of 45.0 m/s at t = 20.0 s. Find (*a*) the average velocity, and (*b*) the average acceleration, between t = 3.00 s and t = 20.0 s.

Summary of Chapter 2

- Kinematics is the description of how objects move with respect to a defined reference frame.
- Displacement is the change in position of an object.
- Average speed is the distance traveled divided by the time it took; average velocity is the displacement divided by the time.
- Average acceleration is the change in velocity divided by time