اللهم اجعل عملنا كله

& Second full summary :-

عمالعاً واجعله لوعهاى

$$VO \Rightarrow t = \overline{X} - M$$

$$\hat{\rho} \sim N(\rho, \frac{P(1-\rho)}{n}) \Rightarrow z = \frac{\hat{\rho} - \rho}{P(1-\hat{\rho})}$$

Population parameter	Point estimation	C.I for parameter	Test statistics
μ	$\overline{\mathbf{x}}$	1) σ known $\overline{X} \mp Z_{\frac{\alpha}{2}} * \frac{\sigma}{\sqrt{n}}$ 2) σ unknown:	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$
		$\overline{X} \mp t_{\frac{\alpha}{2}} * \frac{S}{\sqrt{n}}$	$t = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$
μ1 – μ2 (Independent)	$\overline{\mathbf{X}}-\overline{\mathbf{Y}}$	$(\overline{X} - \overline{Y}) \mp t\alpha_{/2} * S.P * \sqrt{\frac{1}{n} + \frac{1}{m}}$ The pooled variance: S ² $= \frac{S_1^2(n-1) + S_2^2(m-1)}{n+m-2}$ $df = n + m - 2$	$t = \frac{\overline{X} - \overline{Y}}{S. P \sqrt{\frac{1}{n} + \frac{1}{m}}}$
$\mu_1 - \mu_2 = \mu_d$	ď	$\overline{d} \mp t_{\alpha/2} * \frac{s. d}{\sqrt{n}}$ $\overline{d} = \frac{\sum d_i}{n}$ $S.d = \sqrt{\frac{\sum d_i^2}{n-1} - \frac{(\sum d_i)^2}{n*(n-1)}}$	$t = \frac{\overline{d} - \mu_d}{s. d/\sqrt{n}}$
P	$\hat{P} = \frac{X}{n}$.	$\widehat{P} \mp Z_{\frac{\alpha}{2}} * \sqrt{\frac{\widehat{P}(1-\widehat{P})}{n}}$	$Z = \frac{\widehat{P} - P_0}{\sqrt{\frac{P_0(1 - P_0)}{n}}}$

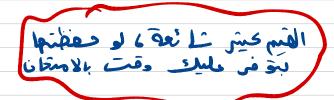
If corrected:

$$Z = \frac{1\hat{\rho} - \hat{\rho} - \frac{1}{2n}}{\sqrt{\frac{\hat{\rho}_{o}(1-\hat{\rho}_{o})}{2n}}}$$

* Octer mination & sample size &-

for
$$M \Rightarrow \Lambda = \left(\frac{Z_{N/2}}{E}\right)^2$$
. A should be a whole no.

for
$$P \Rightarrow n = \left(\frac{Z_{P}}{E}\right)^2 \cdot \hat{P}(1-\hat{P})$$


Types of errors:

	H₀ true \ H₁ false	H₀ false \ H₁ true
Reject H ₀	Type (1) error α : significance level	$1 - \beta$ Power of the test
Accept H ₀		Type (2) error β

common confidence values :-

Confidence level	Z 4/2.
90).	1.64
95/.	1.96
997	2.57

